首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3264篇
  免费   113篇
  国内免费   259篇
  2023年   15篇
  2022年   32篇
  2021年   39篇
  2020年   38篇
  2019年   58篇
  2018年   37篇
  2017年   49篇
  2016年   48篇
  2015年   48篇
  2014年   81篇
  2013年   106篇
  2012年   53篇
  2011年   133篇
  2010年   75篇
  2009年   180篇
  2008年   196篇
  2007年   207篇
  2006年   177篇
  2005年   150篇
  2004年   158篇
  2003年   119篇
  2002年   70篇
  2001年   62篇
  2000年   64篇
  1999年   76篇
  1998年   82篇
  1997年   62篇
  1996年   59篇
  1995年   62篇
  1994年   72篇
  1993年   71篇
  1992年   72篇
  1991年   74篇
  1990年   61篇
  1989年   53篇
  1988年   60篇
  1987年   74篇
  1986年   102篇
  1985年   76篇
  1984年   90篇
  1983年   34篇
  1982年   63篇
  1981年   54篇
  1980年   52篇
  1979年   43篇
  1978年   9篇
  1977年   16篇
  1976年   12篇
  1975年   2篇
  1974年   4篇
排序方式: 共有3636条查询结果,搜索用时 31 毫秒
931.
Aim We investigate the relationship between local and regional richness in marine fouling assemblages using an expanded and globally replicated approach by incorporating two dimensions of diversity (taxonomic and functional) and different successional stages. Location Global. Methods In eight different biogeographic regions (Australia, Brazil, Chile, England, Italy, Japan, Portugal and Sweden) 68 polyvinylchloride (PVC) panels (15 × 15 × 0.3 cm) were deployed for colonization. Communities colonizing panels were analysed by measuring percentage cover at each of four different successional ages: 2, 4, 6 and 8 months. Local richness was assessed as the average number of species and functional groups (FGs) per panel and regional richness was evaluated as the estimated (Jack2) asymptote of the sample‐accumulation curves for species and FG on experimental panels. Results We found that the shape of the relationship between local and regional richness depended on successional stage and the type of richness considered, i.e. taxonomic or functional richness. Hardly any relationship was detectable between local taxonomic richness and regional taxonomic richness at any successional stage. In contrast, the relation between local functional and regional functional richness shows a unimodal pattern of change during succession, passing through the stages ‘independent’, ‘unsaturated rising’, ‘saturated rising’ and once again ‘independent’. Main conclusions The relationship between local and regional richness, whether taxonomic or functional, frequently displays independence of the two scales, particularly in early and late phases of the successional process.  相似文献   
932.
在水温25.0℃条件下,采用高速摄像机记录电刺激后体长(6.9+0.1)cm 相近的23尾中华倒刺(鱼巴)幼鱼的快速启动过程并通过对鱼体质心运动的分析考查3个阶段的相关运动参数.结果显示:实验鱼均表现为"C型"快速启动模式,逃逸方向不确定,但不同逃逸方向的相关参数间无显著差异(P>0.05);快速启动后鱼体质心的移动距离(d)和线速度(V)均显著递增(P<0.05),其中线速度在第2阶段末(36 ms)达到最大值,随后相对稳定,线加速度(a)在第2阶段末出现最大值(P<0.05);而角速度(ω)初始启动即出现最大值,随后显著下降(P<0.05),进入第3阶段后稳定在较低水平;第1阶段的线速度(V)与相对旋转半径(RTr)之间相关性不显著.研究结果表明:中华倒刺(鱼巴)幼鱼在快速启动过程中更倾向于采取提高运动速度的逃逸策略,这可能与其流线形体型和水流湍急的生境有关.  相似文献   
933.
Accelerating invasion of grasslands by woody species is a widespread global phenomenon. The native shrub Baccharis pilularis has recently increased in abundance in some California grasslands, with large local community and ecosystem effects. I investigated potential contributions of (1) future global climate and atmospheric changes and (2) variation in moisture and nutrient availability to increased Baccharis germination and early establishment rates. I examined responses of Baccharis seeds and seedlings to simulated warming (+ 1−2 °C) and elevated CO2 (+ 300 ppm) in a 2-year field experiment. Warming and CO2 treatments were applied at ambient and increased water and nitrogen levels chosen to simulate future increases in precipitation (+ 50%) and N deposition (+ 7 gN m−2 y−1). Elevated CO2 and water addition each increased or accelerated germination. Herbivory strongly reduced seedling populations during the winter wet season; drought further reduced seedling survival in the spring. Overall Baccharis survivorship was extremely low (<0.1%) across all treatments, complicating the interpretation of global change effects.  相似文献   
934.
Question: Which nutrient limits primary production in a lake created by flooding industrial cutaway peatland? Location: Clongawny Lake (53°10’N, 07°53’W), County Offaly, Ireland Methods: Nutrient concentrations in lake water and the dynamics of phytoplankton populations were monitored over a 38‐month period. The ratio of dissolved inorganic nitrogen to total phosphorus (DIN:TP) and nutrient enrichment bio‐assays were used to investigate temporal changes in nutrient limitation. Results: Primary production in the new lake was phytoplankton‐driven due to the scarcity of recolonizing macrophytes. Phytoplankton growth was initially phosphorus‐limited. The runoff of phosphate fertilizer from an adjacent coniferous forestry plantation raised the TP concentration of lake water 5.5‐fold. Consequently, the biovolume of phytoplankton increased 30‐fold, and chlorophyll‐a concentrations increased eightfold, reaching hyper‐eutrophic levels. A concurrent depletion of nitrogen in lake water reduced the DIN:TP ratio from 17.8 to 0.6, and phytoplankton growth rapidly became nitrogen‐limited. Phytoplankton composition shifted from dinoflagellates to minute, unicellular chlorophytes, with a coincident decline in species diversity. Cyanobacteria did not proliferate, most likely due to the acidic nature of the lake. Conclusions: Results illustrated the vulnerability of newly created cutaway peatland lakes to developing severe phytoplankton blooms and coincident secondary nitrogen limitation in the presence of moderate external phosphorus inputs.  相似文献   
935.
The biological control of water hyacinth is affected by water nitrogen and phosphorus content and this was investigated experimentally at five levels of nutrient supply by measuring plant photosynthetic and growth responses, and mirid reproduction and herbivory of nutrient treated plants. Low nitrogen (2–0.2 mg L−1) and phosphorus (0.2–0.01 mg L−1) supply decreased hyacinth photosynthesis, growth and biomass accumulation relative to plants supplied 200 mg L−1 N and 20 mg L−1 P. This effect depended more on nitrogen supply than phosphorus supply. Chlorophyll fluorescence showed that the photosynthetic light reactions of low nutrient plants were affected and leaves had decreased chlorophyll content, density of functional photosystems II and dissipated a greater proportion of absorbed energy as heat. Gas exchange parameters showed reduced carboxylation efficiency, rates of RuBP regeneration and light saturated photosynthetic rates, but not quantum yields. Effects on photosynthesis translated into lower plant dry biomass. Mirid herbivory exacerbated the effects of low nutrients noted for chlorophyll fluorescence, gas exchange parameters and biomass accumulation, however, these effects were not always significant and there was no obvious correlation between the level of nutrients supplied and the effect of mirid herbivory. Low nutrient supply did, however, affect mirid performance reducing the number of adult insects, nymphs and herbivory intensity suggesting that in the long-term mirid populations would be significantly affected by water nutrient status.  相似文献   
936.
Summary Studies on the tolerance ofAeschynomene americana L. to periods of flooding or soil moisture deficit were conducted in an attempt to elucidate nitrogen fixation as affected by soil moisture. Nitrogenase activity was not reduced significantly in pot-grown Aeschynomene plants subjected to flooding in greenhouse conditions. After 20 days of withholding water from the soil, nitrogenase activities of the drought-stressed plants were much lower than those of either the well-watered or flooded plants. Leaf water potentials were similar in flooded and control plants; however, the droughted plants had leaf water potentials that were 4 bars lower than those of the control plants. Aeschynomene plants were tolerant to long-term periods of flooding, but exhibited a reduction in nitrogenase activity and leaf water status when subjected to soil moisture deficits.  相似文献   
937.
A group of 15 competitive male cyclists [mean peak oxygen uptake, VO2peak 68.5 (SEM 1.5 ml x kg(-1) x min(-1))] exercised on a cycle ergometer in a protocol which began at an intensity of 150 W and was increased by 25 W every 2 min until the subject was exhausted. Blood samples were taken from the radial artery at the end of each exercise intensity to determine the partial pressures of blood gases and oxyhaemoglobin saturation (SaO2), with all values corrected for rectal temperature. The SaO2 was also monitored continuously by ear oximetry. A significant decrease in the partial pressure of oxygen in arterial blood (PaO2) was seen at the first exercise intensity (150 W, about 40% VO2peak). A further significant decrease in PaO2 occurred at 200 W, whereafter it remained stable but still significantly below the values at rest, with the lowest value being measured at 350 W [87.0 (SEM 1.9) mmHg]. The partial pressure of carbon dioxide in arterial blood (PaCO2) was unchanged up to an exercise intensity of 250 W whereafter it exhibited a significant downward trend to reach its lowest value at an exercise intensity of 375 W [34.5 (SEM 0.5) mmHg]. During both the first (150 W) and final exercise intensities (VO2peak) PaO2 was correlated significantly with both partial pressure of oxygen in alveolar gas (P(A)O2, r = 0.81 and r = 0.70, respectively) and alveolar-arterial difference in oxygen partial pressure (P(A-a)O2, r = 0.63 and r = 0.86, respectively) but not with PaCO2. At VO2peak PaO2 was significantly correlated with the ventilatory equivalents for both oxygen uptake and carbon dioxide output (r = 0.58 and r = 0.53, respectively). When both P(A)O2 and P(A-a)O2 were combined in a multiple linear regression model, at least 95% of the variance in PaO2 could be explained at both 150 W and VO2peak. A significant downward trend in SaO2 was seen with increasing exercise intensity with the lowest value at 375 W [94.6 (SEM 0.3)%]. Oximetry estimates of SaO2 were significantly higher than blood measurements at all times throughout exercise and no significant decrease from rest was seen until 350 W. The significant correlations between PaO2 and P(A)O2 with the first exercise intensity and at VO2peak led to the conclusion that inadequate hyperventilation is a major contributor to exercise-induced hypoxaemia.  相似文献   
938.
Fast-growing bacteria and fungi are expected to cause the initial stage of decomposition of woody fragments in and on soils, i.e. the respiration of sugars, organic acids, pectin and easily accessible cellulose and hemi-cellulose. However, little is known about the factors regulating initial wood decomposition. We examined the effect of wood fragment size, vertical position, nitrogen addition and soil origin on initial wood decay and on the relative importance of fungi and bacteria therein. Two fractions of birch wood were used in microcosm experiments, namely wood blocks (dimensions: 3 × 0.5 × 0.5 cm) and sawdust (dimensions: 0.5–2 mm). The woody fragments were enclosed in nylon bags and placed on top of- or buried in an abandoned arable soil and in a heathland soil. After 15, 25 and 40 weeks of incubation, fungal biomass was quantified (as ergosterol and chitin content) and bacterial numbers were determined. The results indicated that initial wood decay was mostly caused by fungi; bacteria were only contributing in sawdust in/on abandoned arable soil. Larger fragment size, burial of fragments and nitrogen addition positively influenced fungal biomass and activity. Fungal biomass and decay activities were much lower in woody fragments incubated in/on heathland soil than in those incubated in/on abandoned arable soil, indicating that soil origin is also an important factor determining initial wood decay.  相似文献   
939.
Extensive spreading of liquid manure onto agricultural fields causes eutrophication of ground and surface water and also pollution of the atmosphere due to the high ammonium nitrogen content. A poly(gamma-glutamic acid) (PGA)-producing strain of Bacillus licheniformis was isolated in this study and investigated for its ability to reduce the ammonium nitrogen by converting ammonium into biomass and PGA as depot forms of nitrogen. In batch cultivations swine manure and an optimized mineral salts medium were used for PGA production. For example the cultivation of B. licheniformis strain S2 in liquid manure, which was modified by adding of 18 g citrate and 80 g glycerol l(-1) and exhibited a carbon to nitrogen ratio of 15.5:1, led to severe reduction of the ammonium content from 2.83 to 0.1 g x l(-1) and to the production of 0.16 g PGA and 7.5 g cell dry mass l(-1) within 410 h. Approximately 28% (w/w) of the total nitrogen was converted into cellular biomass, whereas 0.1% (w/w) was used for the production of PGA. In addition, approximately 33% (w/v) of the original ammonium was lost by stripping.  相似文献   
940.
Stimulation of vegetative growth by an elevated CO2 concentration does not always lead to an increase in reproductive yield. This is because reproductive yield is determined by the fraction of biomass allocated to the reproductive part as well as biomass production. We grew Xanthium canadense at low N (LN) and high N levels (HN) under an ambient (360 mol mol-1) and elevated (700 mol mol-1) CO2 concentration ([CO2]) in open-top chambers. Reproductive yield was analysed as the product of: (1) the duration of the reproductive period, (2) the rate of dry mass acquisition in the reproductive period, and (3) the fraction of acquired biomass allocated to the reproductive part. Elevated [CO2] increased the total amount of biomass that was allocated to reproductive structures, but this increase was caused by increased capsule mass without a significant increase in seed production. The increase in total reproductive mass was due mainly to an increase in the rate of dry mass acquisition in the reproductive period with a delay in leaf senescence. This positive effect was partly offset by a reduction in biomass allocation to the reproductive part at elevated [CO2] and HN. The duration of the reproductive period was not affected by elevated [CO2] but increased by HN. Seed production was strongly constrained by the availability of N for seed growth. The seed [N] was very high in X. canadense and did not decrease significantly at elevated [CO2]. HN increased seed [N] without a significant increase in seed biomass production. Limited seed growth caused a reduction in biomass allocation to the reproductive part even though dry mass production was increased due to increased [CO2] and N availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号