首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3265篇
  免费   112篇
  国内免费   260篇
  3637篇
  2024年   3篇
  2023年   15篇
  2022年   32篇
  2021年   39篇
  2020年   38篇
  2019年   58篇
  2018年   37篇
  2017年   49篇
  2016年   48篇
  2015年   48篇
  2014年   81篇
  2013年   106篇
  2012年   53篇
  2011年   133篇
  2010年   75篇
  2009年   180篇
  2008年   196篇
  2007年   207篇
  2006年   177篇
  2005年   150篇
  2004年   158篇
  2003年   119篇
  2002年   70篇
  2001年   62篇
  2000年   64篇
  1999年   76篇
  1998年   82篇
  1997年   62篇
  1996年   59篇
  1995年   62篇
  1994年   72篇
  1993年   71篇
  1992年   72篇
  1991年   74篇
  1990年   61篇
  1989年   53篇
  1988年   60篇
  1987年   74篇
  1986年   102篇
  1985年   76篇
  1984年   90篇
  1983年   34篇
  1982年   63篇
  1981年   54篇
  1980年   52篇
  1979年   43篇
  1978年   9篇
  1977年   16篇
  1976年   12篇
  1974年   4篇
排序方式: 共有3637条查询结果,搜索用时 15 毫秒
1.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
2.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
3.
4.
Summary Responses of lentil in unsterile soils at low, medium and high levels of plant available soil P toGlomus fasciculatum inoculation were evaluated. It was observed that growth, dry matter accumulation, nodulation, and nitrogen fixation were considerably improved in VAM inoculated plants over uninoculated control at low and medium levels of plant available soil P.  相似文献   
5.
Summary Soil tests, plant performance, and plant tissue analyses were used to study the availability of sulfur to wetland rice in 30 Philippine soils. The critical concentrations of available sulfur by the calcium phosphate, lithium chloride, ammonium acetate, and hydrochloric acid extractions were 9, 25, 30, and 5 mg/kg, respectively. The critical total sulfur limits were 0.11% in the shoot at maximum tillering 0.055% in the straw at maturity, and 0.065% in the grain. The critical N:S ratio was 15 in the shoot at maximum tillering, 14 in the straw at maturity, and 26 in the grain. The critical sulfate-sulfur limit was 150 mg/kg in the shoot at maximum tillering and 100 mg/kg in the straw at maturity. The critical sulfate-sulfur/total sulfur percentage ratio was 15% in the shoot at maximum tillering and the straw at maturity. Plant performance, judged by appearance and yield of dry matter, straw, and grain, was generally poorer in the sulfur deficient soils than in the other soils. Although the calcium phosphate and ammonium acetate methods gave a better correlation between plant performance and available sulfur than the others, all four methods separated sulfur-deficient soils from non-deficient ones. The hydrochloric acid method merits further study because it is simple and versatile.  相似文献   
6.
Nitrogen is the major growth-limiting nutrient for marine algae. One potential source of nitrogen for marine algae is ammonium released by invertebrates. Many mid-intertidal reefs in northeastern New Zealand are dominated by a close association between the honeycomb barnacle Chamaesipho columna and an encusting brown alga Pseudolithoderma sp. Growth of Pseudolithoderma was enhanced in the presence of live C. columna, which released ammonium at a greater rate than the maximum rate of ammonium uptake by Pseudolithoderma. Algal tissue on barnacle tests had a lower C:N ratio than tissue located more than 2 cm from the nearest barnacle, suggesting the barnacle is an important source of nitrogen for the alga. The role of nutrient exchange in determining ecological patterns of species in marine communities is discussed.  相似文献   
7.
The green alga Chlorella fusca accumulates polyphosphates under conditions of nitrogen starvation while deassembling the photosynthetic apparatus. The polyphosphate content of cells regreening after resupply with nitrate under different culture conditions was investigated by P-31 in-vivo NMR spectroscopy. Neither phosphate deficiency nor anaerobiosis during the first hours of regreening inhibited the recovery of the cells. Polyphosphates were degraded during regeening. Differences in the amount of polyphosphates of phosphate supplied and deficient cells occurred only after more then 8 h. After 16 h phosphate deficient cells had still 75% of the polyphosphate content of phosphate suppled cells. In cells kept under anaerobic conditions polyphosphate degradation was much higher than in oxygen supplied cells. After 8 h they contained less than 50% of the polyphosphate content of oxygen supplied cells. These data suggest that polyphosphates serve as obligatory phosphate source during regreening and may be used as an energy source.Non standard abbreviations EDTA Ethylene diamine tetraacetic acid - FID Free induction decay - MOPSO 3-(N-morpholine)-2-hydroxy-propanesulfonic acid - NMR Nuclear magnetic resonance - PP Polyphosphates - PP4 central phosphate groups of polyphosphates  相似文献   
8.
9.
Summary Two methods have been developed in order to discriminate between lateral roots, nodules and root-derived structures which exhibit both root and nodule histological features and which can develop on legumes inoculated with certainRhizobium mutants. The first method, known as the clearing method, allows the observation by light microscopy of cleared undissected root-structures. The second, known as the slicing method, is a complementary technique which provides a greater degree of structural information concerning such structures. The two methods have proved invaluable in defining unequivocally the nature of the interaction between a rhizobial strain and a legume host.  相似文献   
10.
Air-dried fresh and dead specimens ofPolygonum cuspidatum were incubated for 250 days in the laboratory, and the growth and turnover of microbial biomass-C in the organic matter were studied. The biomass-C in the fresh leaf and fresh stem attained maximum levels on day 14 and day 7, respectively, and then settled down to stable levels. In the dead leaf and dead stem, increase in biomass-C ceased by day 4 and the biomass-C levels did not change thereafter. The turnover time of the biomass-C was estimated from the amount of biomass-C and the release rate of CO2-C. The turnover was rapid in the early period of incubation. Then the turnover time became longer and after incubation for 70 days the values approached those in natural soils (longer than 16 days). During the incubation period, nitrogen was not mineralized in any organic matter. In the dead leaf and dead stem, asymbiotic nitrogen fixation activity increased after incubation for about 40 days and disappeared by the end of the incubation period, whereas nitrogen fixation was hardly detected in the fresh leaf and fresh stem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号