全文获取类型
收费全文 | 2807篇 |
免费 | 73篇 |
国内免费 | 229篇 |
专业分类
3109篇 |
出版年
2023年 | 7篇 |
2022年 | 19篇 |
2021年 | 26篇 |
2020年 | 25篇 |
2019年 | 37篇 |
2018年 | 26篇 |
2017年 | 36篇 |
2016年 | 35篇 |
2015年 | 39篇 |
2014年 | 59篇 |
2013年 | 75篇 |
2012年 | 39篇 |
2011年 | 109篇 |
2010年 | 60篇 |
2009年 | 151篇 |
2008年 | 165篇 |
2007年 | 182篇 |
2006年 | 159篇 |
2005年 | 126篇 |
2004年 | 142篇 |
2003年 | 105篇 |
2002年 | 58篇 |
2001年 | 49篇 |
2000年 | 50篇 |
1999年 | 67篇 |
1998年 | 77篇 |
1997年 | 51篇 |
1996年 | 52篇 |
1995年 | 54篇 |
1994年 | 67篇 |
1993年 | 68篇 |
1992年 | 67篇 |
1991年 | 65篇 |
1990年 | 55篇 |
1989年 | 53篇 |
1988年 | 58篇 |
1987年 | 70篇 |
1986年 | 97篇 |
1985年 | 75篇 |
1984年 | 86篇 |
1983年 | 29篇 |
1982年 | 58篇 |
1981年 | 52篇 |
1980年 | 48篇 |
1979年 | 39篇 |
1978年 | 8篇 |
1977年 | 14篇 |
1976年 | 11篇 |
1975年 | 2篇 |
1974年 | 3篇 |
排序方式: 共有3109条查询结果,搜索用时 17 毫秒
91.
Effects of SO2, aqueous fluoride (NaF) and a solution of nitrogen compounds (NH4NO3) on the visible symptoms, pollutant accumulation and ultrastructure of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] seedlings were studied in an open-air experiment lasting for 3 consecutive years. Visible injury symptoms were
most pronounced in combination exposures and whenever F was applied. Visible symptoms correlated well with needle pollutant
concentrations. Exposure to NaF increased needle F contents particularly when F was applied with SO2 or NH4NO3. This suggests that a reduction in N or SO2 emissions, in F polluted areas, could improve the condition of conifers via decreased accumulation of phytotoxic F in the
needles. Norway spruce needles accumulated 2 – 10 times as much S and F as those of Scots pine. Microscopic observations showed
various changes in the needle mesophyll cell ultrastructure. In both species, exposure to SO2 increased significantly the amount of cytoplasmic vacuoles, suggesting detoxification of excess sulphate or low pH. F treatments
resulted in a significant enlargement of plastoglobuli in Scots pine and a darkening of plastoglobuli in Norway spruce. All
exposures enhanced the accumulation of lipid bodies. An increased portion of translucent plastoglobuli was most pronounced
in N treatments. Many of the ultrastructural changes and visible symptoms appeared only as number of years exposed increased,
indicating that long-term experiments are needed. Both visible symptoms and ultrastructural changes pointed to the more pronounced
sensitivity of Norway spruce compared to Scots pine. Ultrastructural results mostly supported earlier qualitative observations
of F, N and SO2 effects on needle mesophyll cell ultrastructure. However, no reduction of thylakoids in SO2 containing exposure or curling of thylakoids in F exposure could be detected in the present study.
Received: 5 December 1994 / Accepted: 28 April 1995 相似文献
92.
Sjaak Peelen Sybren S. Wijmenga Paul J. A. Erbel Robert L. Robson Robert R. Eady Jacques Vervoort 《Journal of biomolecular NMR》1996,7(4):315-330
Summary The 1H, 15N and 13C backbone and 1H and 13C beta resonance assignments of the long-chain flavodoxin from Azotobacter chroococcum (the 20-kDa nifF product, flavodoxin-2) in its oxidized form were made at pH 6.5 and 30°C using heteronuclear multidimensional NMR spectroscopy. Analysis of the NOE connectivities, together with amide exchange rates, 3JHnH coupling constants and secondary chemical shifts, provided extensive solution secondary structure information. The secondary structure consists of a five-stranded parallel -sheet and five -helices. One of the outer regions of the -sheet shows no regular extended conformation, whereas the outer strand 4/6 is interrupted by a loop, which is typically observed in long-chain flavodoxins. Two of the five -helices are nonregular at the N-terminus of the helix. Loop regions close to the FMN are identified. Negatively charged amino acid residues are found to be mainly clustered around the FMN, whereas a cluster of positively charged residues is located in one of the -helices. Titration of the flavodoxin with the Fe protein of the A. chroococcum nitrogenase enzyme complex revealed that residues Asn11, Ser68 and Asn72 are involved in complex formation between the flavodoxin and Fe protein. The interaction between the flavodoxin and the Fe protein is influenced by MgADP and is of electrostatic nature.Abbreviations SQ
semiquinone
- FMN
riboflavin 5-monophosphate; nif, nitrogen fixation
- TSP
3-(trimethylsilyl)propionate sodium salt
- DSS
2,2-dimethyl-2-silapentane-5-sulfonate sodium salt
Supplementary Material is available on request, comprising a Materials and Methods section for the expression and purification of the A. chroococcum flavodoxin, a Table S1 containing the parameters of the titration of A. chroococcum flavodoxin with the Fe protein, and a Table S2 containing the 15N, HN, 13C, 1H, 13C, 1H and 13CO chemical shifts.To whom correspondence should be addressed. 相似文献
93.
Nutrient concentration in shape Sphagna at increased N-deposition rates and raised atmospheric CO2 concentrations 总被引:1,自引:0,他引:1
Sphagnum fuscum, S. magellanicum, S. angustifolium and S. warnstorfii were treated with N deposition rates (0, 10, 30 and 100 kg ha-1 a-1) and with four atmospheric CO2 concentrations (350, 700, 1000 and 2000 ppm) in greenhouse for 71–120 days. Thereafter, concentrations of total N, P, K, Ca and Mg in the capitulae of the Sphagna were determined. The response of each species to N deposition was related to ecological differences. With increasing N deposition treatments, moss N concentrations increased and higher N:P-ratios were found, the increase being especially clear at the highest N load. Sphagnum fuscum, which occupies ombrotrophic habitats, was the most affected by the increased nitrogen load and as a consequence the other elements were decreased. Oligotrophic S. magellanicum, wide nutrient status tolerant S. angustifolium and meso-eutrophic S. warnstorfii tolerated better increased N deposition, though there were increased concentrations of Ca and Mg in S. warnstorfii and Mg in S. magellanicum. Nitrogen and P concentrations decreased with raised CO2 concentrations, except for S. magellanicum. This seems to be the first time this kind of response in nutrient concentrations to enhanced CO2 concentration has been shown to exist in bryophytes. The concentration of K clearly decreased in S. fuscum as did the concentration of Mg in the other Sphagna with increasing CO2. Sphagnum angustifolium and S. magellanicum, which are the less specialized species, were the least affected by the CO2 treatments. 相似文献
94.
Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species 总被引:26,自引:0,他引:26
Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both. 相似文献
95.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots. 相似文献
96.
Lambeck IC Fischer-Schrader K Niks D Roeper J Chi JC Hille R Schwarz G 《The Journal of biological chemistry》2012,287(7):4562-4571
14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites. 相似文献
97.
Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna 总被引:1,自引:0,他引:1
Edith Bai Thomas W. Boutton Feng Liu X. Ben Wu Steven R. Archer C. Thomas Hallmark 《Oecologia》2009,159(3):493-503
Variation in the stable N isotope ratio (δ15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf δ15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long × 12 m wide in a subtropical savanna ecosystem in southern Texas,
USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and δ15N were also measured along the transect. At the landscape scale, leaf δ15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil δ15N, total N, and GWC appeared to contribute to this spatial pattern of leaf δ15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both
N mineralization and nitrification. Both soil δ15N and leaf [N] were positively correlated with leaf δ15N of non-N2 fixing plants. Leaf δ15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the δ15N of P. glandulosa’s leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf δ15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions
at ecosystem and landscape scales. 相似文献
98.
Dorothée Vincent Gerd Slawyk Géraldine Sarthou Laurent Seuront Benoît Sautour 《Journal of experimental marine biology and ecology》2007,352(2):295-305
The stable isotope of nitrogen (15N) and an appropriate three-compartment model were used in two 24-h lasting feeding experiments to trace the flow of N through the copepod Acartia discaudata and Calanus helgolandicus fed on 15N-labelled Skeletonema costatum and Thalassiosira weissflogii, respectively. Details of the labelling technique and principles of the computation of N transport rates are given. At the end of a single 24-h feeding period only about one third of the total amount of N ingested by A. discaudata was incorporated into the copepod's body N; we refer to this rate as net incorporation. Most of the N ingested was lost as ammonium (48% of total N ingested), followed by losses in the form of eggs + fecal pellets (13%) and dissolved organic N (DON, 9%). The sum of net incorporation and the latter losses is defined as gross incorporation. Net incorporation by C. helgolandicus and N losses did not vary over time during a 24 h lasting time-series feeding experiment. On average, 79% of total N ingested was actually incorporated by the copepod whereas mean N losses as ammonium, eggs + fecal pellets represented only 12 and 9%, respectively. After a 24-h feeding period only 2% of N ingested was lost as DON. Inspection of individual DON pathways showed that both A. discaudata and C. helgolandicus highly contributed to total DON production via direct excretion (79 and 64%, respectively). The remaining DON appearing in the DON pool was derived from phytoplankton via direct release and/or indirect release (copepod ‘sloppy feeding’). 相似文献
99.
100.
Mark S. Castro Keith N. Eshleman Louis F. Pitelka Geoff Frech Molly Ramsey William S. Currie Karen Kuers Jeffrey A. Simmons Bob R. Pohlad Carolyn L. Thomas David M. Johnson 《Biogeochemistry》2007,84(3):333-348
The objective of this study was to evaluate the nitrogen (N) biogeochemistry of an 18–22 year old forested watershed in western
Maryland. We hypothesized that this watershed should not exhibit symptoms of N saturation. This watershed was a strong source
of nitrate (NO3
−) to the stream in all years, with a mean annual export of 9.5 kg N ha−1 year−1 and a range of 4.4–18.4 kg N ha−1 year−1. During the 2001 and 2002 water years, wet deposition of inorganic N was 9.0 kg N ha−1 year−1 and 6.3 kg N ha−1 year−1, respectively. Watershed N export rates in 2001 and 2002 water years were 4.2 kg N ha−1 year−1 and 5.3 kg N ha−1 year−1, respectively. During the wetter water years of 2003 and 2004, the watershed exported 15.0 kg N ha−1 year−1 and 18.4 kg N ha−1 year−1, rates that exceeded annual wet deposition of N by a factor of two (7.5 kg N ha−1 year−1 in 2003) and three (5.5 kg N ha−1 year−1 in 2004). Consistent with the high rates of N export, were high concentrations (2.1–3.3%) of N in foliage, wood (0.3%) and
fine roots, low C:N ratios in the forest floor (17–24) and mineral soil (14), high percentages (83–96%) of the amount of mineralized
N that was nitrified and elevated N concentrations (up to 3 mg N l−1) in soil solution. Although this watershed contained a young aggrading forest, it exhibited several symptoms of N saturation
commonly observed in more mature forests. 相似文献