首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3309篇
  免费   123篇
  国内免费   622篇
  2024年   8篇
  2023年   29篇
  2022年   48篇
  2021年   57篇
  2020年   59篇
  2019年   84篇
  2018年   58篇
  2017年   70篇
  2016年   89篇
  2015年   74篇
  2014年   91篇
  2013年   106篇
  2012年   73篇
  2011年   148篇
  2010年   102篇
  2009年   179篇
  2008年   197篇
  2007年   211篇
  2006年   189篇
  2005年   165篇
  2004年   171篇
  2003年   131篇
  2002年   78篇
  2001年   71篇
  2000年   74篇
  1999年   77篇
  1998年   85篇
  1997年   69篇
  1996年   66篇
  1995年   66篇
  1994年   74篇
  1993年   80篇
  1992年   79篇
  1991年   73篇
  1990年   66篇
  1989年   66篇
  1988年   65篇
  1987年   77篇
  1986年   101篇
  1985年   80篇
  1984年   88篇
  1983年   29篇
  1982年   64篇
  1981年   54篇
  1980年   50篇
  1979年   41篇
  1978年   8篇
  1977年   14篇
  1976年   11篇
  1974年   4篇
排序方式: 共有4054条查询结果,搜索用时 265 毫秒
41.
Transitions in the growth limiting factor from light (I) to nitrogen (N) and vice versa caused changes in geosmin production, protein and carbohydrate content, and the synthesis of pigments such as chlorophyll a (Chl a), phycobiliproteins (PBPs), and -carotene of the cyanobacterium Oscillatoria brevis. Following IN transition the first 150h, the decrease in protein content was compensated for by an increase of carbohydrates, and thereby, a constant biomass level was maintained in this period. Thereafter, biimass dropped to 15% of its initial level. A decrease in geosmin and pigment content was observed during transition from IN-limited growth. However, geosmin increased relative to phytol (Chl a) and -carotene which may indicate that a lowered demand for phytol and -carotene during N-limited growth allows isoprenoid precursors to be directed to geosmin rather than to pigment synthesis. Synthesis of Chl a and -carotene at the expense of geosmin was suggested for the observed start of increase in geosmin production only at the time that Chl a and -carotene had reached their I-limited steady state. Transition from nitrogen to light limited growth caused an acceleration of metabolism shown by a rapid decrease in carbohydrate content accompanied by an increase in protein content. The growth rate of the organisms temporarily exceeded the dilution rate of the culture and the biomass level increased 6-fold. Due to the only modest changes in geosmin production (2-fold) compared to changes in biomass level (6-fold) during I-or N-limited growth, environmental factors seem to have limited effect on geosmin production.Abbreviations Chl a chlorophyll a - dry wt dry weight; - I-limited light-limited - N-limited nitrogen-limited - PBP phycobiliprotein This research was performed at the Department of Microbiology, University of Amsterdam, with finacial support provided by the Royal Norwegian Ministry of Foreign Affairs and the Royal Norwegian Council for Scientific and Industrial Research  相似文献   
42.
Thiobacillus thiooxidans DSM 504 was shown to grow with adenine, hypoxanthine, xanthine and uric acid as sole sources of nitrogen. Growth with these compounds was observed after lag periods of varying lengths, unless the cells had been previously grown with the same purine base. The disappearance of adenine was accompanied by a temporary accumulation of hypoxanthine in the medium. The utilization of purines was inhibited by ammonia (1 mM). Guanine, pyrimidines and some other organic compounds were not utilized.Non-standard abbreviation U-14C uniformly labeled by 14C  相似文献   
43.
Nickel was found to be required for expression of urease activity in batch cultures of Thiocapsa roseopersicina strain 6311, Chromatium vinosum strain 1611 and Thiocystis violacea strain 2311, grown photolithotrophically with NH4Cl as nitrogen source. In a growth medium originally free of added nickel and EDTA, the addition of 0.1–10 M nickel chloride caused an increase in urease activity, while addition of EDTA (0.01–2 mM) caused a strong reduction. Variation of the nitrogen source had no pronounced influence on the level of urease activity in T. roseopersicina grown with 0.1 M nickel in the absence of EDTA. Only nickel, of several heavy metal ions tested, could reverse suppression of urease activity by EDTA. Nickel, however, did not stimulate and EDTA did not inhibit the enzyme in vitro. When nickel was added to cultures already growing in a nickel-deficient, EDTA-containing medium, urease activity showed a rapid increase which was not inhibited by chloramphenicol. It is concluded that the (inactive) urease apoprotein may be synthesized in the absence of nickel and can be activated in vivo without de novo protein synthesis by insertion of nickel into the pre-formed enzyme protein.  相似文献   
44.
Evidence for the existence of an energy-dependent urea permease was found for Alcaligenes eutrophus H16 and Klebsiella pneumoniae M5a1 by studying uptake of 14C-urea. Since intracellular urea was metabolized immediately, uptake did not result in formation of an urea pool. Evidence is based on observations that the in vivo urea uptake and in vitro urease activity differ significantly with respect to kinetic parameters, temperature optimum, pH optimum, response towards inhibitors and regulation. The K m for urea uptake was 15–20 times lower (38 M and 13 M urea for A. eutrophus and K. pneumoniae, respectively) than the K m of urease for urea (650 M and 280 M urea), the activity optimum for A. eutrophus was at pH 6.0 and 35°C for the uptake and pH 9.0 and 65°C for urease. Uptake but not urease activity in both organisms strongly decreased upon addition of inhibitors of energy metabolism, while in K. pneumoniae, potent inhibitors of urease (thiourea and hydroxyurea) did not affect the uptake process. Significant differences in the uptake rates were observed during growth with different nitrogen sources (ammonia, nitrate, urea) or in the absence of a nitrogen source; this suggested that a carrier is involved which is subject to nitrogen control. Some evidence for the presence of an energy-dependent uptake of urea was also obtained in Pseudomonas aeruginosa DSM 50071 and Providencia rettgeri DSM 1131, but not in Proteus vulgaris DSM 30118 and Bacillus pasteurii DSM 33.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide - DNP 2,4-dinitrophenole  相似文献   
45.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   
46.
47.
Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod and fix mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation.The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.Abbreviations EIA enzyme immunoassay - GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Me methyl ester - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   
48.
The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic - PAR photosynthetically active radiation - RuBP ribulose-1,5-bisphosphate  相似文献   
49.
Air-dried fresh and dead specimens ofPolygonum cuspidatum were incubated for 250 days in the laboratory, and the growth and turnover of microbial biomass-C in the organic matter were studied. The biomass-C in the fresh leaf and fresh stem attained maximum levels on day 14 and day 7, respectively, and then settled down to stable levels. In the dead leaf and dead stem, increase in biomass-C ceased by day 4 and the biomass-C levels did not change thereafter. The turnover time of the biomass-C was estimated from the amount of biomass-C and the release rate of CO2-C. The turnover was rapid in the early period of incubation. Then the turnover time became longer and after incubation for 70 days the values approached those in natural soils (longer than 16 days). During the incubation period, nitrogen was not mineralized in any organic matter. In the dead leaf and dead stem, asymbiotic nitrogen fixation activity increased after incubation for about 40 days and disappeared by the end of the incubation period, whereas nitrogen fixation was hardly detected in the fresh leaf and fresh stem.  相似文献   
50.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号