首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
  国内免费   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   14篇
  2007年   13篇
  2006年   6篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   8篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   3篇
排序方式: 共有122条查询结果,搜索用时 13 毫秒
31.
Why study hydrolases, and why model them? First, hydrolases themselves are of fundamental importance and utility. Examples of their utility in organic synthesis include kinetic resolutions of optical isomers. Restriction endonucleases (DNA hydrolases) are key tools for biotechnology and are vital biological catalysts. Peptidases are necessary for protein digestion and can be harnessed to perform the reverse reaction (peptide synthesis). Thus, for these and many other reasons, hydrolases receive the attention of fundamental and applied research. Models of hydrolases can contribute to our understanding of reaction mechanisms and may also supplant the enzymes as useful catalysts under some conditions. Altering or even increasing the specificity of natural catalysts are also goals of these model studies.  相似文献   
32.
Rhodococcus erythropolis A10 metabolizes acetonitrile by a two step process involving nitrile hydratase (NHase) and amidase. Both the enzymes were inducible and low basal levels of activities were observed in the cells grown in the absence of acetonitrile (AN). Cobalt and iron enhanced NHase, while amidase showed iron dependence. Presence of glucose or ammonium sulphate (AS) failed to affect acetonitrile utilization.  相似文献   
33.
The first examples of 2-pyranosylperimidines are reported. The β-d-glucopyranosyl nitrile oxide 5, generated by base-induced dehydrochlorination of the hydroximoyl chloride 4, reacted with 1,8-diaminonaphthalene to afford the 2-(β-d-glucopyranosyl)perimidine 8. The d-xylo-, d-galacto-, d-manno- and d-glycero analogues 12, 15, 16 and 19 were prepared similarly. The glycals 9 and 13 were formed as by-products resulting from elimination of acetic acid from the corresponding pyranosylperimidines. The structure of d-glucose-derived perimidine 8 was established by X-ray crystallography.  相似文献   
34.
Cytidine (cyt) and adenosine (ado) react with cis-[L2Pt(μ-OH)]2(NO3)2 (L = PMe3, PPh3) in various solvents to give the nucleoside complexes cis-[L2Pt{cyt(− H),N3N4}]3(NO3)3 (L = PMe3, 1),cis-[L2Pt{cyt(− H),N4}(cyt,N3)]NO3 (L = PPh3, 2), cis-[L2Pt{ado(− H),N1N6}]2(NO3)2 (L = PMe3, 3) and cis-[L2Pt{ado(− H),N6N7}]NO3 (L = PPh3, 4). When the condensation reaction is carried out in solution of nitriles (RCN, R = Me, Ph) the amidine derivatives cis-[(PPh3)2PtNH=C(R){cyt(− 2H)}]NO3 (R = Me, 5a; R = Ph, 5b) and cis-[(PPh3)2PtNH=C(R){ado(− 2H)}]NO3 (R = Me, 6a: R = Ph, 6b) are quantitatively formed. The coordination mode of these nucleosides, characterized in solution by multinuclear NMR spectroscopy and mass spectrometry, is similar to that previously observed for the nucleobases 1-methylcytosine (1-MeCy) and 9-methyladenine (9-MeAd). The cytotoxic properties of the new complexes, and those of the nucleobase analogs, cis-[(PPh3)2PtNH=C(R){1-MeCy(− 2H)}]NO3 (R = Me, 7a: R = Ph, 7b), cis-[(PPh3)2PtNH=C(R){9-MeAd(− 2H)}]NO3 (R = Me, 8a: R = Ph, 8b) have been investigated in a wide panel of human cancer cells. Interestingly, whereas the Pt(II) nucleoside complexes (1-4) did not show appreciable cytotoxicity, the corresponding amidine derivatives (7a, 7b, 8a, 8b, 5b, and 6b) exhibited a significant in vitro antitumor activity.  相似文献   
35.
Comamonas testosteroni Ni1 nitrile hydratase is a Fe-type nitrile hydratase whose native and recombinant forms are identical. Here, the iron of Ni1 nitrile hydratase was replaced by cobalt using a chaperone based Escherichia coli expression system. Cobalt (CoNi1) and iron (FeNi1) enzymes share identical Vmax (30 nmol min(-1) mg(-1)) and Km (200 microM) toward their substrate and identical Ki values for the known competitive inhibitors of FeNi1. However, nitrophenols used as inhibitors do display a different inhibition pattern on both enzymes. Furthermore, CoNi1 and FeNi1 are also different in their sensitivity to nitric oxide and carbon monoxide, CO being selective of the cobalt enzyme. These differences are rationalized in relation to the nature of the catalytic metal center in the enzyme.  相似文献   
36.
The crystal structure of Fe-type nitrile hydratase from Rhodococcus erythropolis AJ270 was determined at 1.3A resolution. The two cysteine residues (alphaCys(112) and alphaCys(114)) equatorially coordinated to the ferric ion were post-translationally modified to cysteine sulfinic acids. A glutamine residue (alphaGln(90)) in the active center gave double conformations. Based on the interactions among the enzyme, substrate and water molecules, a new mechanism of biocatalysis of nitrile hydratase was proposed, in which the water molecule activated by the glutamine residue performed as the nucleophile to attack on the nitrile which was simultaneously interacted by another water molecule coordinated to the ferric ion.  相似文献   
37.
Nitrile hydratases are important industrial catalysts to produce valuable amides. In this study, we describe a comprehensive and systematic approach to the development of an inducible expression system for enhanced nitrile hydratase expression in Corynebacterium glutamicum. Through promoter engineering, codon optimization and design of ribosome binding site sequences, the nitrile hydratase activity toward 3-cyanopyridine was improved from 0.33 U/mg DCW to 12.03 U/mg DCW in shake-flask culture. By introduction of the novel inducible mmp expression system, the nitrile hydratase activity was further elevated to 14.97 U/mg DCW. Finally, a high nitrile hydratase yield of 1432 U/mL was achieved in a fed-batch fermentation process and used for nicotinamide production. These results provide new insights for the development of heterologous protein expression systems in C. glutamicum.  相似文献   
38.
A semi-purified nitrile hydratase from Rhodococcus erythropolis A4 was applied to biotransformations of 3-oxonitriles 1a–4a, 3-hydroxy-2-methylenenitriles 5a–7a, 4-hydroxy-2-methylenenitriles 8a–9a, 3-hydroxynitriles 10a–12a and 3-acyloxynitrile 13a into amides 1b–13b. Cross-linked enzyme aggregates (CLEAs) with nitrile hydratase and amidase activities (88% and 77% of the initial activities, respectively) were prepared from cell-free extract of this microorganism and used for nitrile hydration in presence of ammonium sulfate, which selectively inhibited amidase activity. The genes nha1 and nha2 coding for and β subunits of nitrile hydratase were cloned and sequenced.  相似文献   
39.
Levels of sinalbin (4-hydroxybenzylglucosinolate) and 28 other glucosinolates were determined in leaves and roots of 20 species that were either phylogenetically close to Sinapis alba, Sinapis arvensis, or Sinapis pubescens (tribe Brassiceae, Brassicaceae), or were expected to contain arylalkyl nitrilase activity. Comparison with a molecular phylogenetic tree based on ITS DNA sequences identified two separate occurrences of sinalbin. The first in a group of species related to S. alba (including members of the genera Coincya and Kremeriella); and the second in S. arvensis, nested among sinalbin deficient species. Significant 4-hydroxyphenylacetonitrile degrading enzyme activity was found in both S. alba and S. arvensis, but in S. alba the major product was the corresponding carboxylic acid, while in S. arvensis the major product was the amide. Both investigated enzyme activities, nitrilase and nitrile hydratase, were specific, accepting only certain arylacetonitriles such as 4-hydroxy and 4-methoxyphenylacetonitrile. Only the S. alba enzyme required an oxygen in para position of the substrate, as found in sinalbin. Indole-3-acetonitrile, arylcyanides, and arylpropionitriles were poor substrates. The nitrilase activity of S. alba was quantitatively comparable to that reported in the monocot Sorghum bicolor (believed to be involved in cyanogenic glycoside metabolism). Glucosinolates derived from methionine were found in all Sinapis clades. Glucosinolate patterns suggested a complex evolution of glucosinolates in the investigated species, with several apparent examples of abrupt changes in glucosinolate profiles including chain length variation and appearance of glucosinolates derived from branched-chain amino acids. NMR data for desulfated homosinalbin, 9-methylsulphonylnonylglucosinolate, 3-methylpentylglucosinolate and related glucosinolates are reported, and a facultative connection between sinalbin and specific nitrilases is suggested.  相似文献   
40.
The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号