首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   10篇
  国内免费   2篇
  381篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   6篇
  2014年   12篇
  2013年   17篇
  2012年   7篇
  2011年   19篇
  2010年   9篇
  2009年   10篇
  2008年   21篇
  2007年   22篇
  2006年   17篇
  2005年   14篇
  2004年   18篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   11篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1986年   3篇
  1985年   13篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1977年   8篇
  1976年   7篇
  1975年   9篇
  1974年   9篇
  1973年   9篇
  1972年   2篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
31.
Manihot esculenta (cassava) is a root crop originating from South America that is a major staple in the tropics, including in marginal environments. This study focused on South American and African germplasm and investigated the genetic architecture of hydrogen cyanide (HCN), a major component of root quality. HCN, representing total cyanogenic glucosides, is a plant defense component against herbivory but is also toxic for human consumption. We genotyped 3354 landraces and modern breeding lines originating from 26 Brazilian states and 1389 individuals were phenotypically characterized across multi-year trials for HCN. All plant material was subjected to high-density genotyping using genotyping by sequencing. We performed genome-wide association mapping to characterize the genetic architecture and gene mapping of HCN. Field experiments revealed strong broad- and narrow-sense trait heritability (0.82 and 0.41, respectively). Two major loci were identified, encoding for an ATPase and a MATE protein, and contributing up to 7 and 30% of the HCN concentration in roots, respectively. We developed diagnostic markers for breeding applications, validated trait architecture consistency in African germplasm and investigated further evidence for the domestication of sweet and bitter cassava. Fine genomic characterization revealed: (i) the major role played by vacuolar transporters in regulating HCN content; (ii) the co-domestication of sweet and bitter cassava major alleles are dependent upon geographical zone; and (iii) the major loci allele for high HCN in M. esculenta Crantz seems to originate from its ancestor, M. esculenta subsp. flabellifolia. Taken together, these findings expand our insights into cyanogenic glucosides in cassava roots and its glycosylated derivatives in plants.  相似文献   
32.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   
33.
腈水合酶基因克隆与调控表达的研究进展   总被引:2,自引:1,他引:2  
微生物腈水合酶作为新型生物催化剂得到日益广泛的应用 ,但野生菌株本身存在的酶稳定性差等问题制约了这一绿色工艺的发展 ,基因工程菌为解决这个难题开辟了新的思路。总结了各种菌株中腈水合酶的序列研究进展 ,虽然基因序列和蛋白序列同源性不高 ,但它们都以基因簇的形式存在 ,并具有相同的活性中心序列。归纳了克隆并表达腈水合酶基因的基本步骤和方式 ,并提出几种有效增强重组腈水合酶活性表达的方法。  相似文献   
34.
A new iridoid glucoside has been isolated from Stachytarpheta mutabilis and assigned the structure and configuration of 6β-hydroxyipolamiide on the basis of 1H NMR and 13C NMR evidence. The conversion of this compound into penta- acetyllamiol proved the above assignment.  相似文献   
35.
Hydrolysis of 3-methoxy-16alpha-nitro-14,17-ethenoestra-1,3,5(10)-trien-17beta-yl acetate under weakly basic conditions leads to formation of 3-methoxy-2'-oxopyrrolidino-[4',5':14beta,15beta]-estra-1,3,5 (10)-trien-17-one, the structure of which has been confirmed by X-ray analysis and some chemical transformations. The reactivity of 3-methoxy-16alpha-nitro-14,17-ethanoestra-1,3,5(10)-trien-17beta-yl acetate under various conditions of basic hydrolysis has been investigated. The derived compounds have been identified by means of NMR spectroscopy and X-ray analysis.  相似文献   
36.
Crude extracts of the leaves of Spiraea prunifolia Sieb. showed high plant-growth-inhibiting activity comparable to that of S. thunbergii extracts. To isolate the causal compound in S. prunifolia, we performed bioassay-directed purification by monitoring the biological activity per unit weight of the organism containing the bioactive compound (total activity). We isolated 1-O-cis-cinnamoyl-β-D-glucopyranose (cis-CG) and identified it as the most important growth-inhibiting constituent in the crude extracts. We did not detect 6-O-(4′-hydroxy-2′-methylenebutyroyl)-1-O-cis-cinnamoyl-β-D-glucopyranose (cis-BCG) in S. prunifolia, though it is a major plant growth inhibitor in S. thunbergii together with cis-CG. We estimated the cis-CG content in S. prunifolia to be 3.84 mmol kg−1 F.W. This amount is comparable to the cis-CG plus cis-BCG content in S. thunbergii (3.59 mmol kg−1 F.W.). This indicates that S. prunifolia and S. thunbergii have equally high potential to inhibit plant growth, and cis-CG acts as the most important plant-growth inhibitor in S. prunifolia extracts.  相似文献   
37.
Shoots of Centaurium erythraea Rafn were cultivated in 5 l mist trickling bioreactor for 21 and 28 days increasing their dry weight from 0.54 g to 13.7 g and 18.3 g, respectively. About 6880 shoots from 223 initial shoot-tips in 21-day bioreactor producing cycle were produced. The shoots could be successfully rooted and transferred to soil. Secoiridoid accumulation (expressed as a sum of gentiopicroside, sweroside and swertiamarin) in shoots after 21 days of culture reached about 303 mg l−1.  相似文献   
38.
Seigler DS 《Phytochemistry》2005,66(13):1567-1580
The major cyanogenic glycoside of Guazuma ulmifolia (Sterculiaceae) is (2R)-taxiphyllin (>90%), which co-occurs with (2S)-dhurrin. Few individuals of this species, but occasional other members of the family, have been reported to be cyanogenic. To date, cyanogenic compounds have not been characterized from the Sterculiaceae. The cyanogenic glycosides of Ostrya virginiana (Betulaceae) are (2S)-dhurrin and (2R)-taxiphyllin in an approximate 2:1 ratio. This marks the first report of the identification of cyanogenic compounds from the Betulaceae. Based on NMR spectroscopic and TLC data, the major cyanogenic glucoside of Tiquilia plicata is dhurrin, whereas the major cyanide-releasing compound of Tiquilia canescens is the nitrile glucoside, menisdaurin. NMR and TLC data indicate that both compounds are present in each of these species. The spectrum was examined by CI-MS, 1H and 13C NMR, COSY, 1D selective TOCSY, NOESY, and 1J/2,3J HETCOR experiments; all carbons and protons are assigned. The probable absolute configuration of (2R)-dhurrin is established by an X-ray crystal structure. The 1H NMR spectrum of menisdaurin is more complex than might be anticipated, containing a planar conjugated system in which most elements are coupled to several other atoms in the molecule. The coupling of one vinyl proton to the protons on the opposite side of the ring involves a 6J- and a 5/7J-coupling pathway. A biogenetic pathway for the origin of nitrile glucosides is proposed.  相似文献   
39.
A superior novel recombinant strain, E. coli BL21(DE3)/pETNHM, containing the start codon mutation of the subunit, was constructed and selected as an overexpression and high efficient mutation platform for the genetic manipulation of the nitrile hydratase (NHase). Under optimal conditions, the specific activity of the recombinant strain reached as high as 452 U/mg dry cell. Enzymatic characteristics studies showed that the reaction activation energy of the recombinant NHaseM was 24.4 ± 0.5 kJ/mol, the suited pH range for catalysis was 5.5–7.5, and the Km value was 4.34 g/L (82 mM). To assess the feasibility of the NHase improvement by protein rational design using this E. coli, site-directed mutagenesis of S122A, S122C, S122D and βW47E of the NHaseM were carried out. The NHaseM (S122A) and NHaseM (S122D) mutants were entirely inactive due to the charge change of the side-chain group. The product tolerance of the NHaseM (S122C) mutant was enhanced while its activity decreased by 30%. The thermo-stability of the NHaseM (βW47E) mutant was significantly strengthened, while its activity reduced by nearly 50%. These results confirmed that the specific activity of the mutant NHase expressed by the recombinant E. coli BL21(DE3)/pETNHM can reasonably change with and without mutations. Therefore, this recombinant E. coli can be efficiently and confidently used for the further rational/random evolution of the NHase to simultaneously improve the activity, thermo-stability and product tolerance of the target NHase.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号