首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3814篇
  免费   245篇
  国内免费   214篇
  2024年   11篇
  2023年   39篇
  2022年   35篇
  2021年   57篇
  2020年   130篇
  2019年   103篇
  2018年   113篇
  2017年   111篇
  2016年   80篇
  2015年   81篇
  2014年   124篇
  2013年   227篇
  2012年   74篇
  2011年   128篇
  2010年   94篇
  2009年   162篇
  2008年   179篇
  2007年   186篇
  2006年   175篇
  2005年   141篇
  2004年   127篇
  2003年   119篇
  2002年   98篇
  2001年   67篇
  2000年   71篇
  1999年   76篇
  1998年   80篇
  1997年   74篇
  1996年   84篇
  1995年   97篇
  1994年   88篇
  1993年   79篇
  1992年   85篇
  1991年   65篇
  1990年   82篇
  1989年   65篇
  1988年   71篇
  1987年   65篇
  1986年   67篇
  1985年   66篇
  1984年   76篇
  1983年   32篇
  1982年   56篇
  1981年   65篇
  1980年   57篇
  1979年   40篇
  1978年   19篇
  1977年   16篇
  1976年   19篇
  1974年   9篇
排序方式: 共有4273条查询结果,搜索用时 500 毫秒
31.
A dependence of the plasmalemma redox activity, determined by the reduction of external electron acceptors (ferricyanide, nitro-blue tetrazolium), on the energy state of the cell, which was modified by light conditions or introduction of glucose into the media, was shown on leaves of Elodea canadensis Rich. Glucose (10 m M ) and light (40 W m-2) caused hyperpolarization of the membrane potential and stimulated the redox activity of the plasmalemma. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) completely inhibited the light activation of electrogenic and redox functions of the plasmalemma. The light saturation intensity for membrane potential and ferricyanide reductase activity was 10–30% of the light saturation of photosynthesis. Membrane potential, K+ transport and plasmalemma redox activity changed in parallel in response to light and darkness and when DCMU was added. Ferricyanide reductase activity is suggested to be a simple parameter for characterizing the energy state of the cell. The functional significance of the light-induced hyperpolarization of the membrane potential is discussed.  相似文献   
32.
The low gas permeability of a diffusion barrier in the cortex of soybean nodules plays a significant role in the protection of nitrogenase from oxygen inactivation. It may also set an upper limit on nodule respiration and nitrogen fixation rates. Two methods which have been used to quantify the gas permeability of leguminous nodules are reviewed and found to be unreliable. A new assay technique for determining both the nodule activity and gas permeability is developed and tested. This ‘lag-phase’ assay is based on the time nodules require to reach steady-state ethylene production after being exposed to acetylene. The technique is rapid, insensitive to errors in biochemical parameters associated with nitrogenase, and is non-destructive. The method was tested with intact aeroponically grown soybean plants for which the mean nodule gas permeability was found to be 13.3×10−3 mms−1. This corresponds to a layer of cells approximately 35 um thick and is consistent with previously reported values.  相似文献   
33.
While diurnal cycles in nitrogen fixation rates are sometimes assumed to result from diurnal variation in photosynthetically active radiation, contradicting evidence exists that indicate soil temperature is the primary environmental influence. These studies assessed the significance of temperature on soybean nitrogen fixation under field conditions. Two groups of intact field-grown soybean plants, one at ambient and the other exposed to a 10°C diurnal variation in soil temperature, were nondestructively assayed for acetylene reduction rates. Activity was closely associated with soil temperature (R2=0.85), even when temperature was 12 h out of phase with ambient. Data were also obtained to determine if the effects of rhizosphere temperature on nitrogen fixation are mediated through an effect on the nodule oxygen permeability. Nodule oxygen permeability of intact, aeroponically grown soybean was closely correlated with the diurnal changes in temperature (R2=0.90).  相似文献   
34.
The potential of barley (Hordeum vulgare L.) and tomato (Lycopersicon esculentum Mill.) roots for net NO 3 - absorption increased two-to five fold within 2 d of being deprived of NO 3 - supply. Nitrogen-starved barley roots continued to maintain a high potential for NO 3 - absorption, whereas NO 3 - absorption by tomato roots declined below control levels after 10 d of N starvation. When placed in a 0.2 mM NO 3 - solution, roots of both species transported more NO 3 - and total solutes to the xylem after 2 d of N starvation than did N-sufficient controls. However, replenishment of root NO 3 - stores took precedence over NO 3 - transport to the xylem. Consequently, as N stress became more severe, transport of NO 3 - and total solutes to the xylem declined, relative to controls. Nitrogen stress caused an increase in hydraulic conductance (L p) and exudate volume (J v) in barley but decrased these parameters in tomato. Nitrogen stress had no significant effect upon abscisic acid (ABA) levels in roots of barley or flacca (a low-ABA mutant) tomato, but prevented an agerelated decline in ABA in wild-type tomato roots. Applied ABA had the same effect upon barley and upon the wild type and flacca tomatoes: L p and J v were increased, but NO 3 - absorption and NO 3 - flux to the xylem were either unaffected or sometimes inhibited. We conclude that ABA is not directly involved in the normal changes in NO 3 - absorption and transport that occur with N stress in barley and tomato, because (1) the root ABA level was either unaffected by N stress (barley and flacca tomato) or changed, after the greatest changes in NO 3 - absorption and transport and L p had been observed (wild-type tomato); (2) changes in NO 3 - absorption/transport characteristics either did not respond to applied ABA, or, if they did, they changed in the direction opposite to that predicted from changes in root ABA with N stress; and (3) the flacca tomato (which produces very little ABA in response to N stress) responded to N stress with very similar changes in NO 3 - transport to those observed in the wild type.Abbreviation and symbols ABA abscisic acid - Jv exudate volume - Lp root hydraulic conductance  相似文献   
35.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   
36.
The expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots.Abbreviation cDNA copy DNA - poly(A)+RNA polyadenylated RNA  相似文献   
37.
Asymmetric reduction of 2,6,6,-trimethyl-2-cyclohexene-l,4-dione (4-oxoisophrone) to (6R)-2,2,6-trimethyl-1,4-cyclohexane-dione((3R)-dihydro-4-oxoisophorone) was catalysed by immobilized thermophilic bacteria, Thermomonospora curvata JTS 321. Because of leakage of entrapped cells from gel beads during reactions using culture medium, we optimized the medium to allow the microbial conversion under conditions of controlled cell growth. Of the media screened, liver infusion medium was found to be the most suitable and microbial conversion was achieved without cell leakage from the immobilized gels. Immobilized T. curvata cells were repeatedly used for the asymmetric reduction of 4-oxoisophorone, more than 15 times, with an extent of conversion of 50%.  相似文献   
38.
Abstract Anaerobic growth on elemental sulfur using dissimilar iron reduction by Thiobacillus ferrooxidans has been demonstrated. The ferric ion reducing activity (FIR) of the anaerobic cells was double that of the aerobic cells. Significant differences in inhibition of FIR by respiratory inhibitors were observed between aerobic and anaerobic cells. A higher amount of cytochrome was detected in anaerobic cells compared to aerobic cells. Absorption minima developed with the addition of ferric sulfate in the dithionite reduced cell suspension demonstrated that the ferric ion could accept electrons from the cytochrome system of this bacterium. The possibility of two different electron transport chains in ferric ion reduction is discussed.  相似文献   
39.
L. Högbom  P. Högberg 《Oecologia》1991,87(4):488-494
Summary Current and maximally induced nitrate reductase activity (NRA), total-N, nitrate, K, P, Ca, Mg, Mo and sucrose in leaves ofDeschampsia flexuosa was measured three times during the vegetation period in forests along a deposition gradient (150 km) in south Sweden, in north Sweden where the nitrogen deposition is considerably lower, and at heavily N-fertilized plots. In addition, the interaction between nitrogen nutrition and light was studied along transects from clearings into forest in both south and north Sweden. Plants from sites with high nitrogen deposition had elevated current NRA compared to plants from less polluted sites, indicating high levels of available soil nitrate at the former. Current NRA and total N concentration in grass from sites with high deposition resembled those found at heavily N-fertilized plots. Under such circumstances, the ratio current NRA: maximally induced NRA as well as the concentration of nitrate was high, while the concentration of sucrose was low. This suggests that the grass at these sites was already utilizing a large portion of its capacity to assimilate nitrate. Light was found to play an important role in the assimilation of nitrate; leaf concentration of sucrose was found to be negatively correlated with both nitrate and total N. Consequently, grass growing under dense canopies in south Sweden is not able to dilute N by increasing growth. The diminished capacity of the grass to assimilate nitrate will increase leaching losses of N from forests approaching N saturation.  相似文献   
40.
Iron-efficient (WF9 corn and Coker 227 oat) and Fe-inefficient (ys1 corn and TAM 0–312 oat) cultivars were comparatively tested for their response to Fe-deficiency stress induced by the use of either ferrous or ferric chelators. Corn and oats were grown in 20 M Fe with 0, 60, and 120 M BPDS and 40 M Fe with 0, 120, and 240 M BPDS and 20 M Fe with 0 and 40 M EDDHA. All four cultivars tested, both Fe-efficient and Fe-inefficient, continuously reduced Fe3+ to Fe2+ at a low level as evidenced by the production of Fe2+ (BPDS)3 in test nutrient solutions over time. Severity of chlorosis increased as more BPDS was added to the nutrient solutions for both WF9 and ys1 corn, but unlike corn, Coker 227 and TAM 0-312 oats were both able to obtain Fe from the Fe2+ (BPDS)3 complex and were less chlorotic as a result. In short-term (4-hour) in vivo measurements, iron-stressed WF9 (Fe-efficient) corn reduced more Fe3+ to Fe2+ than similarly stressed ys1 corn, Coker 227 oat or TAM 0-312 oat. Thus, at the same time that Fe-efficient WF9 corn reduces more Fe than the other cultivars, it is also unable to compete with BPDS for that Fe in the nutrient solution. These differences coupled with the observation that only Coker 227 oat produced measureable iron solubilizing substances (phytosiderophores) suggest that these two species differ in their mechanisms for obtaining Fe during Fe-deficiency stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号