首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3814篇
  免费   244篇
  国内免费   223篇
  2024年   16篇
  2023年   40篇
  2022年   36篇
  2021年   57篇
  2020年   130篇
  2019年   103篇
  2018年   113篇
  2017年   111篇
  2016年   80篇
  2015年   81篇
  2014年   124篇
  2013年   227篇
  2012年   74篇
  2011年   128篇
  2010年   94篇
  2009年   162篇
  2008年   179篇
  2007年   186篇
  2006年   175篇
  2005年   141篇
  2004年   127篇
  2003年   119篇
  2002年   98篇
  2001年   67篇
  2000年   71篇
  1999年   76篇
  1998年   80篇
  1997年   74篇
  1996年   84篇
  1995年   97篇
  1994年   88篇
  1993年   79篇
  1992年   85篇
  1991年   65篇
  1990年   82篇
  1989年   65篇
  1988年   71篇
  1987年   65篇
  1986年   67篇
  1985年   66篇
  1984年   76篇
  1983年   32篇
  1982年   56篇
  1981年   65篇
  1980年   58篇
  1979年   40篇
  1978年   19篇
  1977年   16篇
  1976年   19篇
  1974年   9篇
排序方式: 共有4281条查询结果,搜索用时 15 毫秒
11.
E. Komor  M. Thom  A. Maretzki 《Planta》1987,170(1):34-43
Suspension-cultured cells of sugarcane (Saccharum sp. hybrids) did not oxidize exogenously supplied NADH in the absence of ferricyanide (potassium hexacyanoferrate [III]), whereas they did at a low rate in the presence of ferricyanide. Concomitantly, ferricyanide was reduced at a slow rate. Neither a pH change nor a change in respiration was caused by the addition of NADH and-or ferricyanide, but ferricyanide was a strong inhibitor of sugar transport. In contrast to cells, protoplasts rapidly oxidized exogenous NADH. This oxidation was accompanied by an increase in oxygen consumption and a net proton disappearance from the medium. Exogenous ferricyanide was reduced only slowly by protoplasts. Simultaneous presence of NADH and ferricyanide produced two effects: 1) a very rapid stoichiometric oxidation of NADH and reduction of ferricyanide until one of the reaction compounds was exhausted, and 2) a nearly instantaneous inhibition of the slower phase of NADH oxidation, which was observed in the presence of NADH but absence of ferricyanide. The extra oxygen consumption and the alkalinization of the medium, as observed with NADH, were also immediately stopped by ferric ions and ferrous ions. The presence of NADH and ferricyanide caused a fast stoichiometric acidification of the medium. These results were taken as evidence that the oxidation of NADH in the absence of ferricyanide is not related to the NADH-ferricyanide-coupled redox reaction. Furthermore, addition of NADH caused some uncoupling of the protoplasts, an effect which would explain the strong acidification of the cell cytoplasm and the inhibition of various transport systems. The NADH-oxidizing systems oxidized both the -configurated pyridine nucleotide and the -configurated form. Since NADH-linked dehydrogenases usually do not work with -NADH (with the exception of the endoplasmic-reticulum-bound electron-transport system), the observed activities could have been derived from contaminating membranes and dying protoplasts in the suspension. All reported reactions partly or predominantly occurred in the supernatant of the protoplast suspension and increased considerably during incubation of the protoplasts. The rates and quantities of oxygen consumption, pH change, and ferricyanide reduction fitted with NADH oxidation in a stoichiometric ratio, which implied that all these reactions occurred in the extracellular space, without involving transmembrane steps. No evidence for a physiological role in energization of the plasmalemma was found.Abbreviation NADH -nicotinamide adenine dinucleotide reduced form  相似文献   
12.
The nitrate reductase (NR, EC 1.6.6.1) activity in root nodules formed by hydrogenase positive (Hup+) and hydrogenase negative (Hup) Rhizobium leguminosarum strains was examined in symbioses with the pea cultivar Alaska ( Pisum sativum L.), Rates of activity were determined by the in vivo assay in nodules from plants that were only N2-dependent or grown in the presence of 2 m M KNO3. The rates varied widely among strains, regardless of the Hup phenotype of the R. leguminosarum strain used for inoculation, but the overall results indicated that nodules formed by Hup strains accumulated more nitrite in the incubation medium than did those with Hup phenotypes. Total plant dry weight and reduced nitrogen content of pea plants grown in the presence of 2 m M KNO3 and inoculated with single Hup+ and Hup R. leguminosarum strains were statistically different among some strains. These observations suggest that the possible advantages derived from the presence of the Hup system on whole plant growth may be counteracted by the higher rates of NR activity in the Hup strains in the R. leguminosarum -pea symbiosis.  相似文献   
13.
Pisum sativum L. cv. Bodil was infected with various strains of Rhizobium leguminosarum (R501, 128c53, B155, 18a or 1044). The Rhizobium genotype influenced the activity of the plant enzyme phosphoenoipyruvate (PEP) carboxylase (EC 4.1.1.31), and the assimilation of fixed N in the root nodules. The specific activity of nodule PEP carboxylase was lowest in the symbioses, which accumulated the least total N (R501 and 128c53). The root bleeding sap of the less effective symbioses contained a lower proportion of asparagine and a higher proportion of glutamine than the more effective symbioses (B155,18a and 1044). The N yield of the symbioses was related neither to the net respiratory CO2 evolution of the root system nor to the nitrogenase linked nodule respiration. The lower yielding symbioses accumulated a larger proportion of the fixed N in the nodules due to a higher proportion of total dry weight contained in the nodule tissue. However, the concentration of soluble protein in the nodules of the lower-yielding symbioses was lower than that recorded for the higher yileding symbioses. The effect of the Rhizobium strains on N yield was maintained at maturity, and reflected in seed yields.  相似文献   
14.
Summary Different phytohormone concentrations induced different fequencies of various chromosome aberrations in calli of Vicia faba. NAA 10 ppm plus KT 2.5 ppm produced more haploids and NAA 30 ppm plus NAA 7.5 ppm produced more tetraploids and breakage. The relationship among the aberrations was analyzed. The hypothesis of ploidy equilibrium was established. The chromosome doubling rate and reduction rate of each treated group were calculated in relation to the observed data and the hypothesis. The frequency of tetraploids and breakage are correlated with each other. The frequency of total aberrations is linearly correlated with that of micronucleus formation. The regression equation is x=31.92+ 10.67 y.  相似文献   
15.
The relationship between nitrification potential and nitrogen accumulation was studied in an early successional sere on Mt. Fuji. Soil organic nitrogen accumulated with the invasion ofPolygonum cuspidatum and successively withMiscanthus oligostachyus and other species. Laboratory incubation experiments showed a higher nitrification potential at theM. oligostachyus state. The numbers of nitrifying bacteria increased with the progress of succession. No significant difference in nitrate reductase activity was found between pioneer and succeeding species. The soil solution at theM. oligostachyus stage contained a lower level of nitrate than rainwater, while that of the bare ground and theP. cuspidatum stage contained a higher nitrate level than rainwater. It was concluded that the high nitrate levels in the soil solution of the bare ground and theP. cuspidatum stage were due to lower nitrate-absorbing activity, leading to loss of nitrogen with precipitation, while the lower nitrate levels at theM. oligostachyus stage when higher nitrification activity occurred were due to higher nitrate-absorbing activity, preventing net loss of nitrogen from the ecosystem.  相似文献   
16.
During growth on glycerol two marine Desulfovibrio strains that can grow on an unusually broad range of substrates contained high activities of glycerol kinase, NAD(P)-independent glycerol 3-phosphate dehydrogenase and the other enzymes necessary for the conversion of dihydroxyacetone phosphate to pyruvate. Glycerol dehydrogenase and a specific dihydroxyacetone kinase were absent. During growth on dihydroxyacetone, glycerol kinase is involved in the initial conversion of this compound to dihydroxyacetone phosphate which is then further metabolized. Some kinetic properties of the partially purified glycerol kinase were determined. The role of NAD as electron carrier in the energy metabolism during growth of these strains on glycerol and dihydroxyacetone is discussed.Glycerol also supported growth of three out of four classical Desulfovibrio strains tested. D. vulgaris strain Hildenborough grew slowly on glycerol and contained glycerol kinase, glycerol 3-phosphate dehydrogenase and enzymes for the dissimilation of dihydroxyacetone phosphate. In D. gigas which did not grow on glycerol the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase were absent in lactate-grown cells.Abbreviations DHA dihydroxyacetone - DHAP dihydroxyacetone phosphate - G3P glycerol 3-phosphate - GAP glyceraldehyde 3-phosphate - 3-PGA 3-phosphoglycerate - 2-PGA 2-phosphoglycerate - 2,3-DPGA 2,3-diphosphoglycerate - PEP phosphoenolpyruvate - DH dehydrogenase - GK glycerol kinase - DHAK dihydroxyacetone kinase - TIM triosephosphate isomerase - PGK 3-phosphoglycerate kinase - PK pyruvate kinase - LDH lactate dehydrogenase - DTT dithiotreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid - PIPES piperazine-1,1-bis(2-ethane sulfonic acid) - BV2+/BV+ oxidized/reduced benzylviologen - PMS phenazine methosulfate - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide  相似文献   
17.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   
18.
Summary Two annual species of Bromus, an invader (B. hordeaceus, ex B. mollis) and a non-invader (B. intermedius), were grown for 28 days in growth chambers, at 5 and 100 M NO 3 - in flowing nutrient solution. No differences between the two species were observed at either NO 3 - level, in terms of relative growth rate (RGR) or its components, dry matter partitioning, specific NO 3 - absorption rate, nitrogen concentration, and other characteristics of NO 3 - uptake and photosynthesis. The effects of decreasing NO 3 - concentration in the solution were mainly to decrease the NO 3 - concentration in the plants through decreased absorption rate, and to decrease the leaf area ratio through increased specific leaf mass and decreased leaf mass ratio. Organic nitrogen concentration varied little between the two treatments, which may be the reason why photosynthetic rates were not altered. Consequently, RGR was only slightly decreased in the 5-M treatment compared to the 100-M treatment. This is in contrast with other species, where growth is reduced at much higher NO 3 - concentrations. These discrepancies may be related to differences in RGR, since a log-linear relationship was found between RGR and the NO 3 - concentration at which growth is first reduced. In addition, a strong linear relationship was found between the RGR of these species and their maximum absorption rate for nitrate, suggesting that the growth of species with low maximum RGR may be partly regulated by nutrient uptake.  相似文献   
19.
Alfalfa (Medicago sativa L.) growth and nodulation in acid soil is reduced because the plant and its bacterial symbiontRhizobium meliloti cannot tolerate acid, aluminum-rich soil. A study was conducted to determine if a relatively acid-tolerant alfalfa germplasm combined with a relatively acid-tolerantR. meliloti strain could overcome these limitations. In a light room study, an acid-tolerant alfalfa germplasm inoculated with a more acid-tolerantR. meliloti strain produced greater top growth, nodule number and weight, and acetylene reduction values in an unlimed soil (pH 4.6) than the same germplasm inoculated with a relatively acid-sensitiveR. meliloti strain or an acid-sensitive germplasm inoculated with either a relatively acid-tolerant or acid-sensitiveR. meliloti strain.  相似文献   
20.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号