首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18572篇
  免费   1699篇
  国内免费   873篇
  2024年   46篇
  2023年   499篇
  2022年   704篇
  2021年   1019篇
  2020年   818篇
  2019年   983篇
  2018年   896篇
  2017年   675篇
  2016年   744篇
  2015年   903篇
  2014年   1229篇
  2013年   1581篇
  2012年   881篇
  2011年   1023篇
  2010年   729篇
  2009年   887篇
  2008年   868篇
  2007年   801篇
  2006年   751篇
  2005年   705篇
  2004年   644篇
  2003年   477篇
  2002年   453篇
  2001年   363篇
  2000年   278篇
  1999年   253篇
  1998年   253篇
  1997年   230篇
  1996年   174篇
  1995年   150篇
  1994年   197篇
  1993年   136篇
  1992年   134篇
  1991年   85篇
  1990年   93篇
  1989年   59篇
  1988年   66篇
  1987年   46篇
  1986年   44篇
  1985年   37篇
  1984年   35篇
  1983年   36篇
  1982年   35篇
  1981年   33篇
  1980年   17篇
  1979年   19篇
  1978年   13篇
  1976年   9篇
  1975年   9篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Coronary artery disease (CAD) is a multicellular disease characterized by chronic inflammation. Peripheral blood-mononuclear cells (PBMCs), as a critical component of immune system, actively cross-talk with pathophysiological conditions induced by endothelial cell injury, reflecting in perturbed PBMC expression. STAT1 is believed to be relevant to CAD pathogenesis through regulating key inflammatory processes and modulating STAT1 expression play key roles in fine-tuning CAD-related inflammatory processes. This study evaluated PBMC expressions of STAT1, and its regulators (miR-150 and miR-223) in a cohort including 72 patients with CAD with significant ( ≥ 50%) stenosis, 30 patients with insignificant ( < 50%) coronary stenosis (ICAD), and 74 healthy controls, and assessed potential of PBMC expressions to discriminate between patients and controls. We designed quantitative real-time polymerase chain reaction (RT-qPCR) assays and identified stable reference genes for normalizing PBMC quantities of miR-150, miR-223, and STAT1 applying geNorm algorithm to six small RNAs and five mRNAs. There was no significant difference between CAD and ICAD patients regarding STAT1 expression. However, both groups of patients had higher levels of STAT1 than healthy controls. miR-150 and miR-223 were differently expressed across three groups of subjects and were downregulated in patients compared with healthy controls, with the lowest expression levels being observed in patients with ICAD. ROC curves suggested that PBMC expressions may separate between different groups of study subjects. PBMC expressions also discriminated different clinical manifestations of CAD from ICADs or healthy controls. In conclusion, the present study reported PBMC dysregulations of STAT1, miR-150, and miR-223, in patients with significant or insignificant coronary stenosis and suggested that these changes may have diagnostic implications.  相似文献   
992.
993.
994.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway.  相似文献   
995.
We aimed to review and meta-analyze the inflammatory and oxidative factors following alpha lipoic acid (ALA) and its derivative “andrographolid-lipoic acid-1” (AL-1) in ulcerative colitis (UC). ALA plays an important role in scavenging intracellular radicals and inflammatory elements. AL-1 is found in herbal medicines with potent anti-inflammatory properties. Data were collected from the Google Scholar, PubMed, Scopus, Evidence-based medicine/clinical trials, and Cochrane library database until 2017, which finally resulted in 22 animal studies (70 rats and 162 mice). The beneficial effects of ALA or AL-1 on the most important parameters of UC were reviewed; also, studies were considered separately in mice and rats. Administration of ALA and AL-1 significantly reduced the tumor necrosis factor-α level compared with the controls, while data were not noteworthy in the meta-analysis (mean differences = −18.57 [95% CI = −42.65 to 5.51], P = 0.13). In spite of insignificant decrease in meta-analysis outcomes (differences = 6.92 [95% CI = −39.33 to 53.16], P = 0.77), a significant reduction in myeloperoxidase activity was shown following ALA or AL-1 treatment compared with the controls. Despite significant differences in each study, we had to exclude some studies to homogenize data for meta-analyzing as they showed insignificant results. Interleukin 6, cyclooxygenase-2, glutathione, malondialdehyde, superoxide dismutase, histopathological score, macroscopic and microscopic scores, disease activity index, body weight change, and colon length were also reviewed. Most studies have emphasized on significant positive effects of ALA and AL-1. Comprehensive clinical trials are obligatory to determine the precious position of ALA or AL-1 in the management of UC.  相似文献   
996.
Chronic kidney disease (CKD) is a traumatic disease with significant psychic consequences to the patient's overall physical condition. microRNA-206 (miR-206) has been reported to play an essential role in the development of various diseases. The purpose of the present study is to investigate the effect of miR-206 through the JAK/STAT signaling pathway on epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells and glomerulosclerosis in rats with CKD. The targeting relationship between miR-206 and ANXA1 was verified. To explore the role of miR-206 in CKD, the model of CKD rats was established to detect glomerular sclerosis index (GSI), contents of interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-β1), and expression of type IV collagen. Moreover, to further determine the roles of both miR-206 and the JAK/STAT signaling pathway in CKD, the gain- and loss-of function approaches were performed with the expression of ANXA1, α-SMA, E-cadherin, vimentin, N-cadherin, and the JAK/STAT signaling pathway-related genes detected. miR-206 negatively targeted ANXA1. Overexpressed miR-206 inhibited the degeneration and interstitial fibrosis of renal tubular epithelial cells, decreased GSI of rats, and the expression of type IV collagen, TGF-β1 and IL-6. Overexpressed miR-206 inhibited the degeneration of renal tubular epithelial cells, the expression of ANXA1, α-SMA, TGF-β1, p-STAT3, STAT3, p-STAT1, STAT1, p-JAK2, and JAK2, while promoted the expression of E-cadherin. Taken together the results, miR-206 inhibits EMT of renal tubular epithelial cells and glomerulosclerosis by inactivating the JAK/STAT signaling pathway via ANXA1 in CKD.  相似文献   
997.
Previous studies have shown that phosphatase and tensin homolog (PTEN) are key regulators of the development of many malignant tumors and other diseases. However, its regulatory effect on coronary heart disease (CHD) has rarely been reported. Therefore, the regulatory effect of PTEN on the survival and cell death of vascular smooth muscle cells (VSMCs) in CHD mice was elucidated in this study. It was found that the protein and messenger RNA expressions of PTEN in VSMCs of 10 CHD mice were lower than those of normal mice. Then PTEN was overexpressed in VSMCs. It was suggested that the upregulation of PTEN was not conducive to the proliferation and survival of VSMCs in the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. The flow cytometry (Annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide) and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to detect the apoptotic rate of overexpressing PTEN cells. Some data showed that the expression of PTEN could lead to increased apoptotic rate. It was shown that antiapoptotic Bcl-2 levels were decreased, but cleaved caspase-3 and proapoptotic Bax levels were promoted by SIRT6 overexpression in Western blot analysis. Moreover, PI3K/Akt expression and phosphorylation were significantly decreased in cells expressing PTEN. Recovery of PI3K expression inhibited the suppressive influence of PTEN on VSMC survival, as evidenced by the activated PI3K/Akt pathway, increased cell proliferative rate, reduced the apoptotic level, and reversed expression patterns of Bcl-2 and Bax. Therefore, the findings in this study provide a new idea on the occurrence and development mechanism of CHD and may promote the discovery of innovative therapies.  相似文献   
998.
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27, Q27P11, Q34, Q35, Q36, Q40, Q50, and Q50P11. In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.  相似文献   
999.
The neuronal cell line HT22 is an excellent model for studying Parkinson's disease. Growth differentiation factor 15 (GDF15) plays a critical role in Parkinson's disease, but the molecular mechanism involved are not well understood. We constructed the GDF15 overexpression HT22 cells and detected the effects of overexpression of GDF15 on the viability, oxygen consumption, mitochondrial membrane potential of oligomycin-treated HT22 cells. In addition, we used a high-throughput RNA-sequencing to study the lncRNA and mRNA expression profiling and obtained key lncRNAs, mRNA, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The expression of selected DElncRNAs was validated by quantitative real-time PCR (qRT-PCR). Our results showed that overexpression of GDF15 significantly reversed the cells viability, oxygen consumption, and mitochondrial membrane potential effect caused by oligomycin in HT22 cells. The 1093 DEmRNAs and 395 DElncRNAs in HT22 cells between GDF15-oligomycin non-intervention group and a normal control-oligomycin un-intervention group were obtained, and 394 DEmRNAs and 271 DElncRNAs in HT22 cells between GDF15-oligomycin intervention group and normal control-oligomycin intervention group were identified. Base on the GO and KEGG enrichment analysis of between GDF15-oligomycin intervention group and normal control-oligomycin intervention group, positive regulation of cell proliferation was most significantly enriched GO terms, and Cav1 was enriched in positive regulation of cell proliferation pathway. PI3K-Akt signaling pathway was one significantly enriched pathway in GDF15-oligomycin intervention group. The qRT-PCR results were consistent with RNA-sequencing, generally. GDF15 might promote mitochondrial function and proliferation of HT22 cells by regulating PI3K/Akt signaling pathway. Our study may be helpful in understanding the potential molecular mechanism of GDF15 in Parkinson's disease.  相似文献   
1000.
The aim is to explore the treatment effect of coronary artery disease (CAD) and hypertension on plasma levels of renalase activity and also the possible association of renalase rs10887800 gene polymorphism with CAD and hypertension. A total of 286 patients who received coronary angiography were included in the study. Subjects were divided into four groups including (1) hypertensive with no CAD (H-Tens, n = 60); (2) CAD with hypertension (CAD + H-Tens, n = 71); (3) CAD with no hypertension (CAD, n = 61); and (4) nonhypertensive with no CAD as a control group (Con, n = 69). The plasma renalase activity was measured using the Amplex Red Monoamine Oxidase Assay Kit. Renalase rs10887800 single-nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Atorvastatin (P = 0.005), losartan (P < 0.001), and captopril (P = 0.001) were administered significantly more in case groups compared with the Con group. Significant higher and lower levels of renalase activity were observed in H-Tens and CAD patients compared with control subjects (P < 0.001 for both comparisons). Furthermore, no significant differences were obtained in the risk or protective effects of renalase rs10887800 SNP against hypertension and/or CAD in both recessive and dominant genetic models (P > 0.05). According to the findings of the present study, atorvastatin and losartan therapy assumes considerable significance in alleviating hypertension, but not CAD, by increasing the renalase activity. Furthermore, it was found that renalase rs10887800 is less likely a predisposing factor for susceptibility to hypertension and/or CAD in an Iranian southeast population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号