全文获取类型
收费全文 | 64篇 |
免费 | 12篇 |
专业分类
76篇 |
出版年
2023年 | 2篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 7篇 |
2014年 | 5篇 |
2013年 | 1篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 4篇 |
2008年 | 3篇 |
2007年 | 6篇 |
2006年 | 5篇 |
2005年 | 2篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有76条查询结果,搜索用时 15 毫秒
41.
Parents can increase the fitness of their offspring by allocating nutrients to eggs and/or providing care for eggs and offspring. Although we have a good understanding of the adaptive significance of both egg size and parental care, remarkably little is known about the co-evolution of these two mechanisms for increasing offspring fitness. Here, we report a parental removal experiment on the burying beetle Nicrophorus vespilloides in which we test whether post-hatching parental care masks the effect of egg size on offspring fitness. As predicted, we found that the parent's presence or absence had a strong main effect on larval body mass, whereas there was no detectable effect of egg size. Furthermore, egg size had a strong and positive effect on offspring body mass in the parent's absence, whereas it had no effect on offspring body mass in the parent's presence. These results support the suggestion that the stronger effect of post-hatching parental care on offspring growth masks the weaker effect of egg size. We found no correlation between the number and size of eggs. However, there was a negative correlation between larval body mass and brood size in the parent's presence, but not in its absence. These findings suggest that the trade-off between number and size of offspring is shifted from the egg stage towards the end of the parental care period and that post-hatching parental care somehow moderates this trade-off. 相似文献
42.
H. Podskalská J. Rika M. Hoskovec & M. álek 《Entomologia Experimentalis et Applicata》2009,132(1):59-64
When the bodies of small vertebrates start to decay shortly after death, a number of organosulfur compounds are produced, including methanethiol, dimethylsulfide (DMS), dimethyldisulfide (DMDS), dimethyltrisulfide (DMTS), and S-methyl thioacetate. These molecules appear to attract various necrophagous animals. We tested the roles of DMS, DMDS, and DMTS (in order of decreasing volatility) as attractants of carrion beetles (Coleoptera: Silphidae: Nicrophorinae) in a field experiment in an agricultural landscape in southern Bohemia, Czech Republic. We collected a total of 362 adult Nicrophorus vespillo (L.) that were attracted to 220 baited pitfall traps in a 3-day experiment. Sets of traps baited with DMTS were more successful in catching N. vespillo than sets baited with a blank. Traps containing DMDS had higher trapping success than traps containing DMS. In addition, trapping success strongly increased using DMTS in the presence of DMDS but not of DMS, suggesting a synergistic effect of DMDS and DMTS. We observed similar patterns between males and females in response to the infochemicals tested. 相似文献
43.
A. H. C. McLean A. N. Arce P. T. Smiseth D. E. Rozen 《Journal of evolutionary biology》2014,27(6):1205-1216
Intergenerational effects can have either adaptive or nonadaptive impacts on offspring performance. Such effects are likely to be of ecological and evolutionary importance in animals with extended parental care, such as birds, mammals and some insects. Here, we studied the effects of exposure to microbial competition during early development on subsequent reproductive success in the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care. We found that exposure to high levels of microbial competition both during a female's larval development and during her subsequent reproduction resulted in females rearing smaller broods than those exposed to lower levels of microbial competition. To determine whether these differences arose before or after offspring hatching, a cross‐fostering experiment was conducted. Our results demonstrate that the impact of larval competition with microbes for resources extends into adult life and can negatively affect subsequent generations via impacts on the quality of parental care provided after hatching. However, we also find evidence for some positive effects of previous microbial exposure on prehatch investment, suggesting that the long‐term results of competition with microbes may include altering the balance of parental investment between prehatch and post‐hatch care. 相似文献
44.
Christopher B. Cunningham Daven Khana Annika Carter Elizabeth C. McKinney Allen J. Moore 《Ecology and evolution》2021,11(20):14282
Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this “precursor hypothesis” for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co‐opted during the evolution of parent–offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes. 相似文献
45.
MICHELLE PELLISSIER SCOTT WOO-JAI LEE E. D. van der REIJDEN 《Ecological Entomology》2007,32(6):651-661
Abstract. 1. Reproductive cooperation occurs in diverse taxa and a defining characteristic of these social systems is how reproduction is shared. Both male and female burying beetles ( Nicrophorus spp.) facultatively form associations to bury a carcass and rear a single brood, making burying beetles a model system for testing skew theory.
2. In this study, 50% of 40–45 g carcasses and 75% of 55–60 g ones were buried by more than one male and/or female Nicrophorus tomentosus .
3. Females were significantly more likely to cooperate on 55–60 g carcasses than on 40–45 g ones.
4. Analysis of parentage of 13 broods using microsatellite loci as genetic markers showed that maternity analysis of only 2% of the young excluded all females captured leaving the brood chamber after burial. Males previously mated with resident females or displaced by resident males fathered 7% of the young.
5. The male and female remaining the longest were usually the parents of the most offspring, and reproductively dominant individuals also tended to be the largest.
6. Although all but two or three individuals that helped to bury the carcass produced some offspring, reproduction was often not shared equitably. Reproduction of females was significantly skewed on six of nine 40–45 g carcasses but shared fairly equitably on all three 55–60 g ones. Reproduction was skewed among males on 7 of 10 broods.
7. Both males and females relinquished a greater proportion of the brood as the days of assistance from all consexuals increased. 相似文献
2. In this study, 50% of 40–45 g carcasses and 75% of 55–60 g ones were buried by more than one male and/or female Nicrophorus tomentosus .
3. Females were significantly more likely to cooperate on 55–60 g carcasses than on 40–45 g ones.
4. Analysis of parentage of 13 broods using microsatellite loci as genetic markers showed that maternity analysis of only 2% of the young excluded all females captured leaving the brood chamber after burial. Males previously mated with resident females or displaced by resident males fathered 7% of the young.
5. The male and female remaining the longest were usually the parents of the most offspring, and reproductively dominant individuals also tended to be the largest.
6. Although all but two or three individuals that helped to bury the carcass produced some offspring, reproduction was often not shared equitably. Reproduction of females was significantly skewed on six of nine 40–45 g carcasses but shared fairly equitably on all three 55–60 g ones. Reproduction was skewed among males on 7 of 10 broods.
7. Both males and females relinquished a greater proportion of the brood as the days of assistance from all consexuals increased. 相似文献
46.
47.
Resource allocation to growth, reproduction, and body maintenance varies within species along latitudinal gradients. Two hypotheses explaining this variation are local adaptation and counter‐gradient variation. The local adaptation hypothesis proposes that populations are adapted to local environmental conditions and are therefore less adapted to environmental conditions at other locations. The counter‐gradient variation hypothesis proposes that one population out performs others across an environmental gradient because its source location has greater selective pressure than other locations. Our study had two goals. First, we tested the local adaptation and counter‐gradient variation hypotheses by measuring effects of environmental temperature on phenotypic expression of reproductive traits in the burying beetle, Nicrophorus orbicollis Say, from three populations along a latitudinal gradient in a common garden experimental design. Second, we compared patterns of variation to evaluate whether traits covary or whether local adaptation of traits precludes adaptive responses by others. Across a latitudinal range, N. orbicollis exhibits variation in initiating reproduction and brood sizes. Consistent with local adaptation: (a) beetles were less likely to initiate breeding at extreme temperatures, especially when that temperature represents their source range; (b) once beetles initiate reproduction, source populations produce relatively larger broods at temperatures consistent with their local environment. Consistent with counter‐gradient variation, lower latitude populations were more successful at producing offspring at lower temperatures. We found no evidence for adaptive variation in other adult or offspring performance traits. This suite of traits does not appear to coevolve along the latitudinal gradient. Rather, response to selection to breed within a narrow temperature range may preclude selection on other traits. Our study highlights that N. orbicollis uses temperature as an environmental cue to determine whether to initiate reproduction, providing insight into how behavior is modified to avoid costly reproductive attempts. Furthermore, our results suggest a temperature constraint that shapes reproductive behavior. 相似文献
48.
49.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages. 相似文献
50.
Nicrophorusvespilloides is a social beetle that rears its offspring on decomposing carrion. Wild beetles are frequently associated with two types of macrobial symbionts, mites, and nematodes. Although these organisms are believed to be phoretic commensals that harmlessly use beetles as a means of transfer between carcasses, the role of these symbionts on N. vespilloides fitness is poorly understood. Here, we show that nematodes have significant negative effects on beetle fitness across a range of worm densities and also quantify the density‐dependent transmission of worms between mating individuals and from parents to offspring. Using field‐caught beetles, we provide the first report of a new nematode symbiont in N. vespilloides, most closely related to Rhabditoides regina, and show that worm densities are highly variable across individuals isolated from nature but do not differ between males and females. Next, by inoculating mating females with increasing densities of nematodes, we show that worm infections significantly reduce brood size, larval survival, and larval mass, and also eliminate the trade‐off between brood size and larval mass. Finally, we show that nematodes are efficiently transmitted between mating individuals and from mothers to larvae, directly and indirectly via the carcass, and that worms persist through pupation. These results show that the phoretic nematode R. regina can be highly parasitic to burying beetles but can nevertheless persist because of efficient mechanisms of intersexual and intergenerational transmission. Phoretic species are exceptionally common and may cause significant harm to their hosts, even though they rely on these larger species for transmission to new resources. However, this harm may be inevitable and unavoidable if transmission of phoretic symbionts requires nematode proliferation. It will be important to determine the generality of our results for other phoretic associates of animals. It will equally be important to assess the fitness effects of phoretic species under changing resource conditions and in the field where diverse interspecific interactions may exacerbate or reduce the negative effects of phoresy. 相似文献