首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   12篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
21.
22.
Most nests of brood-caring insects are colonized by a rich community of mite species. Since these nests are ephemeral and scattered in space, phoresy is the principal mode of dispersal in mites specializing on insect nests. Often the mites will arrive on the nest-founding insect, reproduce in the nest and their offspring will disperse on the insect's offspring. A literature review shows that mites reproducing in the underground brood chambers of burying beetles use alternative routes for dispersal. For example, the phoretic instars of Poecilochirus spp. (Mesostigmata: Parasitidae) disperse early by attaching to the parent beetles. Outside the brood chamber, the mites switch host at carcasses and pheromone-emitting male beetles, where juvenile and mature burying beetles of several species congregate. Because they preferably switch to beetles that are reproductively active and use all species of burying beetles within their ranges, they have a good chance of arriving in a new brood chamber. Other mite associates of burying beetles (Alliphis necrophilus and Uropodina) disperse from the brood chamber on the beetle offspring. We suggest that these mites forgo the possible time gain of dispersing early on the parent beetles because their mode of attachment precludes host switching. Their phoretic instars, once attached, have to stay on their host and so only dispersing on the beetle offspring guarantees that they are present on reproducing burying beetles of the next season. The mites associated with burying beetles providean example of multiple solutions to one life history problem – how to find a new brood chamber for reproduction. Mites that have mobile phoretic instars disperse on the parent beetles and try to arrive in the next brood chamber by host switching. They are independent of the generation cycle of a single host and several generations of mites per host generation are possible. Mites that are constrained by their mode of attachment disperse on the beetle offspring and wait until their host becomes mature and reproduces. By doing this they synchronize their generation time with the generation time of their host species. Exp Appl Acarol 22: 621–631 © 1998 Kluwer Academic Publishers  相似文献   
23.
Harsh environmental conditions in form of low food availability for both offspring and parents alike can affect breeding behavior and success. There has been evidence that food scarce environments can induce competition between family members, and this might be intensified when parents are caring as a pair and not alone. On the other hand, it is possible that a harsh, food-poor environment could also promote cooperative behaviors within a family, leading, for example, to a higher breeding success of pairs than of single parents. We studied the influence of a harsh nutritional environment on the fitness outcome of family living in the burying beetle Nicrophorus vespilloides. These beetles use vertebrate carcasses for reproduction. We manipulated food availability on two levels: before and during breeding. We then compared the effect of these manipulations in broods with either single females or biparentally breeding males and females. We show that pairs of beetles that experienced a food-poor environment before breeding consumed a higher quantity of the carcass than well-fed pairs or single females. Nevertheless, they were more successful in raising a brood with higher larval survival compared to pairs that did not experience a food shortage before breeding. We also show that food availability during breeding and social condition had independent effects on the mass of the broods raised, with lighter broods in biparental families than in uniparental ones and on smaller carcasses. Our study thus indicates that a harsh nutritional environment can increase both cooperative as well as competitive interactions between family members. Moreover, our results suggest that it can either hamper or drive the formation of a family because parents choose to restrain reproductive investment in a current brood or are encouraged to breed in a food-poor environment, depending on former experiences and their own nutritional status.  相似文献   
24.
Although many forensic entomological studies have described patterns of carrion insect succession and theoretical studies have explained interspecific interactions that drive succession, empirical studies on the quantitative and ecological aspects of carrion insect succession, such as the degree of historical contingency in community assembly and interspecific interactions during succession, are limited. In this study, I investigated variability in the successional pathways of carrion insect communities in rat carcasses and their decomposition processes, and examined the interspecific interactions involved in succession, such as the effects of carcass utilization by early‐arriving species on late‐arriving species. Members of the families Calliphoridae and Formicidae and the species Eusilpha japonica (Motschulsky) and Nicrophorus concolor Kraatz were chiefly observed. In almost all carcasses, formicid species arrived first, and calliphorid species and E. japonica arrived simultaneously or immediately after. Nicrophorus concolor arrived last, with its time of colonization occurring earlier in carcasses with greater E. japonica abundance. Meanwhile, the early‐arriving species decreased when N. concolor arrived. Nicrophorus concolor tended to reproduce on carcasses with lower cumulative abundance of early‐arriving species and tended to feed on carcasses with greater cumulative abundance of early‐arriving species. These results show that the successional pathways of the chief carrion insect species are highly consistent among carcasses. In contrast, early‐arriving species seem to influence the utilization patterns of carcasses by late‐arriving species, and therefore produce variability in the decomposition process. These results also show that succession could be driven by facilitation and interspecific competition between early‐arriving and late‐arriving species.  相似文献   
25.
Abstract.  During the summer months, there is a high mortality of burying beetle (Coleoptera: Silphidae) species in pitfall traps containing dry soil. The present study investigated the possibility that the burying beetle Nicrophorus marginatus is highly susceptible to death from desiccation. In the laboratory, adult beetles lose 1–5% body mass per hour in low humidity conditions (25–30% relative humidity), depending on temperature. This rate of water-loss results in a 50% mortality within 7–16 h at temperatures between 16 and 28 °C. Nicrophorus marginatus produces oral and anal defensive secretions when disturbed but these secretions do not significantly contribute to the high rate of water loss. Beetles readily drink and thus beetles with access to water or in high humidity conditions suffer near zero mortality. For comparison, the similarly sized mesic bess beetle (Coleoptera: Passalidae), Odontotaenius disjunctus , and a large nocturnal tiger beetle (Coleoptera: Cicindelidae), Amblychila cylindriformis , are exposed to dehydrating conditions. Nicrophorus marginatus have higher rates of water-loss (by 26% and 79%, respectively). It is predicted that the diurnal N. marginatus uses behavioural mechanisms to avoid lethal water loss. In the field, N. marginatus displays a strong bimodal activity pattern, avoiding the hottest hours of the day. The significance of these findings is that N. marginatus defies normal predictions of association between water-loss rates and habitat type, and has extended its range into apparently unfavourable habitats despite high water-loss rates. In addition, the results suggest that researchers should provide moisture when studying burying beetles, including the endangered American burying beetle ( Nicrophorus americanus ).  相似文献   
26.
Alternative reproductive tactics can be maintained through differentevolutionary avenues. They can be genetically or stochasticallydetermined, in which case they must yield equal fitness, ortheir use can be conditional, in which case the fitness payoffof alternatives may differ. We attempted to assess the reproductivesuccess of alternative reproductive tactics employed by wildmale and female burying beetles in natural associations on carcassesplaced in the field. A beetle's reproductive tactic was definedby its potential involvement in care of larvae, and parentagewas assessed using oligolocus DNA fingerprinting of offspringand potential parents. Both in males and in females, alternativetactics yielded significantly different reproductive benefits:subordinate females (brood parasites) and males (satellite males)had considerably lower reproductive success than dominant oruncontested individuals. Joint breeding was too infrequent forstatistical inferences, generating intermediate offspring numbers.About 15% of offspring were sired by males not present on thecarcass, suggesting that mating away from reproductive resourcescan produce reproductive benefits to males. Our results, inconcert with the observation that beetles using one tactic canbe manipulated into employing the alternative, support the notionthat Nicrophorus vespilloides uses alternatives conditionally,opportunistically employing lower-benefit tactics when moreprofitable tactics are not available, or as additional "on-the-side"tactics to bolster reproductive success.  相似文献   
27.
Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density‐dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay.  相似文献   
28.
29.
30.
According to classical parental care theory males are expected to provide less parental care when offspring in a brood are less likely to be their own, but empirical evidence in support of this relationship is equivocal. Recent work predicts that social interactions between the sexes can modify co‐evolution between traits involved in mating and parental care as a result of costs associated with these social interactions (i.e. sexual conflict). In burying beetles (Nicrophorus vespilloides), we use artificial selection on a paternity assurance trait, and crosses within and between selection lines, to show that selection acting on females, not males, can drive the co‐evolution of paternity assurance traits and parental care. Males do not care more in response to selection on mating rate. Instead, patterns of parental care change as an indirect response to costs of mating for females.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号