首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1894篇
  免费   66篇
  国内免费   31篇
  1991篇
  2023年   7篇
  2022年   13篇
  2021年   24篇
  2020年   30篇
  2019年   31篇
  2018年   18篇
  2017年   24篇
  2016年   32篇
  2015年   31篇
  2014年   38篇
  2013年   69篇
  2012年   59篇
  2011年   32篇
  2010年   28篇
  2009年   51篇
  2008年   58篇
  2007年   109篇
  2006年   77篇
  2005年   78篇
  2004年   76篇
  2003年   58篇
  2002年   66篇
  2001年   63篇
  2000年   80篇
  1999年   51篇
  1998年   84篇
  1997年   92篇
  1996年   62篇
  1995年   70篇
  1994年   56篇
  1993年   50篇
  1992年   56篇
  1991年   56篇
  1990年   38篇
  1989年   29篇
  1988年   34篇
  1987年   24篇
  1986年   27篇
  1985年   34篇
  1984年   14篇
  1983年   8篇
  1982年   12篇
  1981年   14篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1973年   3篇
  1972年   4篇
  1970年   1篇
排序方式: 共有1991条查询结果,搜索用时 0 毫秒
141.
Plant cell walls are complex configurations of polysaccharides that fulfil a diversity of roles during plant growth and development. They also provide sets of biomaterials that are widely exploited in food, fibre and fuel applications. The pectic polysaccharides, which comprise approximately a third of primary cell walls, form complex supramolecular structures with distinct glycan domains. Rhamnogalacturonan I (RG–I) is a highly structurally heterogeneous branched glycan domain within the pectic supramolecule that contains rhamnogalacturonan, arabinan and galactan as structural elements. Heterogeneous RG–I polymers are implicated in generating the mechanical properties of cell walls during cell development and plant growth, but are poorly understood in architectural, biochemical and functional terms. Using specific monoclonal antibodies to the three major RG–I structural elements (arabinan, galactan and the rhamnogalacturonan backbone) for in situ analyses and chromatographic detection analyses, the relative occurrences of RG–I structures were studied within a single tissue: the tobacco seed endosperm. The analyses indicate that the features of the RG–I polymer display spatial heterogeneity at the level of the tissue and the level of single cell walls, and also heterogeneity at the biochemical level. This work has implications for understanding RG–I glycan complexity in the context of cell‐wall architectures and in relation to cell‐wall functions in cell and tissue development.  相似文献   
142.
Many higher plants have shoot apical meristems that possess discrete cell layers, only one of which normally gives rise to gametes following the transition from vegetative meristem to floral meristem. Consequently, when mutations occur in the meristems of sexually reproducing plants, they may or may not have an evolutionary impact, depending on the apical layer in which they reside. In order to determine whether developmentally sequestered mutations could be released by herbivory (i.e., meristem destruction), a characterized genetic mosaic was subjected to simulated herbivory. Many plants develop two shoot meristems in the leaf axils of some nodes, here referred to as the primary and secondary axillary meristems. Destruction of the terminal and primary axillary meristems led to the outgrowth of secondary axillary meristems. Seed derived from secondary axillary meristems was not always descended from the second apical cell layer of the terminal shoot meristem as is expected for terminal and primary shoot meristems. Vegetative and reproductive analysis indicated that secondary meristems did not maintain the same order of cell layers present in the terminal shoot meristem. In secondary meristems reproductively sequestered cell layers possessing mutant cells can be repositioned into gamete-forming cell layers, thereby adding mutant genes into the gene pool. Herbivores feeding on shoot tips may influence plant evolution by causing the outgrowth of secondary axillary meristems.  相似文献   
143.
Artemisinin, in the form of artemisinin‐based combination therapies (ACTs), is currently the most important compound in the treatment of malaria. The current commercial source of artemisinin is Artemisia annua, but this represents a relatively expensive source for supplying the developing world. In this study, the possibility of producing artemisinin in genetically modified plants is investigated, using tobacco as a model. Heterologous expression of A. annua amorphadiene synthase and CYP71AV1 in tobacco led to the accumulation of amorphadiene and artemisinic alcohol, but not artemisinic acid. Additional expression of artemisinic aldehyde Δ11(13) double‐bond reductase (DBR2) with or without aldehyde dehydrogenase 1 (ALDH1) led to the additional accumulation dihydroartemisinic alcohol. The above‐mentioned results and in vivo metabolic experiments suggest that amorphane sesquiterpenoid aldehydes are formed, but conditions in the transgenic tobacco cells favour reduction to alcohols rather than oxidation to acids. The biochemical and biotechnological significance of these results are discussed.  相似文献   
144.
Summary The effects of brefeldin A (BFA) on the secretion of acid phosphatase (APase) by tobacco protoplasts were investigated. Secretion of APase was inhibited by BFA in a dose-dependent manner, with a concomitant intracellular accumulation of the enzyme. The secreted APase was composed of two isoforms. BFA (10/ g/ml) inhibited the secretion of one of the isoforms without inhibiting that of the other, and this phenomenon explains the partial inhibition of APase secretion as a whole. The inhibition of APase secretion was accompanied by changes in the morphology of the Golgi apparatus and also by an increment in massdensity of cells.Abbreviations APase acid phosphatase - BFA brefeldin A - CHX cycloheximide - PAGE polyacrylamide gel electrophoresis  相似文献   
145.
146.
Summary Callus ofNicotiana tabacum SRI, a mutant with maternally inherited streptomycin resistance, was induced from leaf sections. Callus pieces were mutagenised with N-ethyl-N-nitrosourea and inoculated onto a shoot-induction medium on which calli are normally green. White callus sectors were observed in the mutagenised cultures, and white and variegated shoots were regenerated from these sectored calli. The SR1-A10 line regenerated a chimeric shoot with white leaf margins. The chimeric shoot was grafted onto a normal green rootstock, grown into a flowering plant in the greenhouse, and crosses were made. The SRI-A15 line was crossed using flowers formed on albino plants grown in sterile culture. Pigment deficiency was maternally inherited in both lines. Physical mapping of the chloroplast genome of the SR1-A15 mutant by SalI, PstI and BamHI restriction endonucleases did not reveal any difference between the SR1-A15 and the parental SRI chloroplast genomes.  相似文献   
147.
Extracellular, stylar RNases (S-RNases) are produced by self-incompatible, solanaceous plants, such asNicotiana alata, and are thought to be involved in selfpollen rejection by acting selectively as toxins to selfpollen. In this study, the toxicity of RNases to other plant cells was tested by culturing cells ofN. alata andN. plumbaginifolia in the presence ofS-RNases fromN. alata. The growth of cultured cells ofN. plumbaginifolia was inhibited by theS-RNases, but viability was not affected. Growth of cultured cells of oneN. alata selfincompatibility genotype was inhibited by twoS-RNases, indicating that inhibition was not allele specific. Comparisons with the effects of inactivated RNase and other proteins, suggest that the inhibition of growth byS 2-RNase was partly, but not wholly, due to RNase activity. Heat-denaturedS 2-RNase was a very effective inhibitor of cell growth, but this inhibitory activity may be a cell surface phenomenon.  相似文献   
148.
149.
Green cybrids with a new nucleus-chloroplast combination cannot be selected after protoplast fusion in the intersubfamilial Nicotiana-Solanum combination. As an approach to overcome the supposed plastomegenome incompatibility, a partial plastome transfer by genetic recombination has been considered. After fusions of protoplasts of a light-sensitive Nicotiana tabacum (tobacco) plastome mutant and lethally irradiated protoplasts of wild-type Solanum tuberosum (potato), a single green colony was recovered among 2.5×104 colonies. The regenerated plants had tobacco-like (although abnormal) morphology, but were normally green, and sensitive to tentoxin, demonstrating chloroplast markers of the potato parent. Restriction enzyme analysis of the chloroplast DNA (cpDNA) revealed recombinant, nonparental patterns. A comparison with physical maps of the parental cpDNA demonstrated the presence of a considerable part of the potato plastome flanked by tobacco-specific regions. This potacco plastome proved to be stable in backcross and backfusion experiments, and normally functional in the presence solely of N. tabacum nucleus.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号