首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   18篇
  51篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   2篇
  2009年   1篇
  2006年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
11.
Intermediate band solar cells are a new generation of photovoltaics that allow for better utilization of the solar spectrum. The key and most challenging requirement for these cells is an efficient optical coupling between the intermediate band and the charge conducting bands. GaNAs based intermediate band solar cells have been used to generate electroluminescence. Two electroluminescence peaks are generated in the structure with electrically blocked intermediate band. The peaks are observed for both forward and reverse bias configuration and are attributed to optical transitions from the conduction to the intermediate band, and from the intermediate band to the valence band. The origin of the electroluminescence is confirmed by the temperature dependence of the electroluminescence peak energies that is consistent with the band anticrossing model of the intermediate band formation in dilute nitride alloys. This is the first direct observation of the optical transitions required for the operation of intermediate band solar cells. The results also demonstrate that properly modified intermediate band solar cell structures could be used as multicolor light emitters.  相似文献   
12.
13.
PbTe alloys have been the most efficient materials for thermoelectric power generation since the 1950s. In addition to the observed lattice thermal conductivity reduction by alloy scattering, recent efforts targeting electronic‐transport enhancement through band structure engineering have demonstrated a design route to achieve extraordinary thermoelectric performance. Guided by these recent results, the current work discusses the influence of alloying CdTe in p‐type PbTe where the solubility is strongly temperature‐dependent. Beneficial changes to the band structure and effective scattering of phonons are concurrently inferred when the PbTe–CdTe precipitate composite is expected to become a solid solution at high temperature, enhancing the peak thermoelectric figure of merit to ~1.7. This work emphasizes the importance of solid solution alloys of PbTe for thermoelectric power‐generation applications and also provides an upper limit of about 1 micrometer to the average distance between interfaces above which phonon scattering by composite interfaces is ineffectual.  相似文献   
14.
15.
Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50?200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.  相似文献   
16.
Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys.  相似文献   
17.

The aim of this work was to carry out a comparative study of microbial adhesion on dental alloys and glass ionomers that release fluoride. The action of NaF on the early stages of biofilm development and on the corrosion of the metallic dental materials was analysed. Open circuit potential measurements and potentiostatic electrochemical techniques with different perturbation programs as well as SEM observations, and optical and epifluorescence microscopy were employed. A notable effect of topography and the nature of the substratum on bacterial distribution was observed. In addition, changes in the density and thickness of microbial colonies were noticed when fluoride was present. The results show that the antimicrobial effect of fluoride was significant against planktonic but not against sessile microorganisms. Fluoride released by glass ionomers did not impede bacterial adhesion to the surface. With respect to corrosion, fluoride did not alter significantly the passivity of the dental metallic biomaterials assayed, except for Cu‐Al alloy. Titanium dissolution could occur at high fluoride concentrations (8gl‐1) during oxide layer formation. Consequently, bacterial adherence was influenced by the nature and topography of the substratum and by the presence of fluoride which could also affect the electrochemical behaviour of some metallic substrata.  相似文献   
18.
Lichen ruber planus, contact allergy and hypersensitivity can be linked to oral exposure to metals released from metal alloys commonly used in dentistry. In this context neutron activation analysis was developed for the microdetermination of 36 elements in oral mucosa biopsies of two patients affected by lichen ruber planus and of five subjects as control group.In order to minimise metal contamination during sample collection, biopsies were taken by laser bistoury technique and then submitted to radiochemical neutron activation analysis (RNAA).Among the metals analysed, chromium showed obvious high concentration in gingival biopsies of the two pathological subjects compared to the corresponding tissues of control group. Cobalt and nickel were also determined in higher concentrations, but only in one of the oral mucosa of the two patients.The present findings way support the hypothesis concerning a potential link of lichen ruber planus condition with the exposure to Cr, Co and Ni as released into oral cavity from prosthodontic alloys.  相似文献   
19.
A series of 90/10 cupronickel alloys containing iron at levels between 0% and 5% were immersed in the sea in Chichester Harbour. Samples were retrieved over a 14‐month period and subjected to scanning electron microscopy, energy dispersive X‐ray analysis and X‐ray photoelectron spectroscopy. The alloy with no iron corroded very rapidly and showed little, if any, colonisation. The 0·5% Fe and 1·5% Fe alloys developed microfouling communities dominated by the diatom Amphora, while the 2·5% and 5% Fe‐containing materials showed not only diatoms but also macro‐fouling in the form of barnacle settlement. However, the very loosely adherent nature of the iron and nickel‐rich corrosion products of these high iron alloys resulted in very poor tenacity of adhesion by the macrofouling. However, thick films of diatoms of lower copper tolerance became well established on the iron‐rich alloys. The alternative anti‐fouling mechanisms of the 90/10 copper‐nickels are discussed.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号