首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2481篇
  免费   104篇
  国内免费   130篇
  2024年   5篇
  2023年   24篇
  2022年   28篇
  2021年   44篇
  2020年   59篇
  2019年   54篇
  2018年   57篇
  2017年   59篇
  2016年   50篇
  2015年   86篇
  2014年   75篇
  2013年   119篇
  2012年   69篇
  2011年   135篇
  2010年   96篇
  2009年   122篇
  2008年   115篇
  2007年   138篇
  2006年   111篇
  2005年   128篇
  2004年   142篇
  2003年   92篇
  2002年   100篇
  2001年   82篇
  2000年   52篇
  1999年   46篇
  1998年   46篇
  1997年   49篇
  1996年   30篇
  1995年   30篇
  1994年   31篇
  1993年   36篇
  1992年   31篇
  1991年   34篇
  1990年   45篇
  1989年   30篇
  1988年   33篇
  1987年   25篇
  1986年   22篇
  1985年   28篇
  1984年   31篇
  1983年   21篇
  1982年   25篇
  1981年   28篇
  1980年   10篇
  1979年   17篇
  1978年   7篇
  1977年   6篇
  1976年   3篇
  1974年   5篇
排序方式: 共有2715条查询结果,搜索用时 265 毫秒
141.
The chromosome constitution of hybrids and chromatin patterns of Agropyron elongatum (Host)Neviski in F5 somatic hybrid lines -1–3 and I-1-9 between Triticum aestivum L. and A. elongatum were analyzed. Based on the statistic data of pollen mother cells, F5 I-1-9 and-1-3 had 20–21 bivalents with a frequency of 84.66% and 85.28%, of which, 89.83% and 89.57% were ring bivalents. The result indicated that both hybrid lines were basically stable in the chromosome constitution and behavior. RAPD analysis showed that the two hybrids contained biparental and integrated DNA. GISH (Genome in situ hybridization) revealed that in the form of small chromosome segments, A. elongatum chromatin was scattered on 4–6 wheat chromosomes near by the region of centromere and telomere in the two hybrid lines. SSR analysis indicated that A. elongatum DNA segments were distributed on the 2A, 5B, 6B and 2D wheat chromosomes in the hybrids, which was in accordance with the GISH results that small-segments intercalated poly-site.  相似文献   
142.
White-tailed deer (Odocoileus virginianus) were nearly extirpated from the southeastern USA during the late 19th and early 20th centuries. Recovery programmes, including protection of remnant native stocks and transplants from other parts of the species' range, were initiated in the early 1900's. The recovery programmes were highly successful and deer are presently numerous and continuously distributed throughout the southeastern USA. However, the impact of the recovery programmes on the present genetic structure of white-tailed deer remains to be thoroughly investigated. We used 17 microsatellite DNA loci to assess genetic differentiation and diversity for 543 white-tailed deer representing 16 populations in Mississippi and three extra-state reference populations. There was significant genetic differentiation among all populations and the majority of genetic variation (> or = 93%) was contained within populations. Patterns of genetic structure, genetic similarity and isolation by distance within Mississippi were not concordant with geographical proximity of populations or subspecies delineations. We detected evidence of past genetic bottlenecks in nine of the 19 populations examined. However, despite experiencing genetic bottlenecks or founder events, allelic diversity and heterozygosity were uniformly high in all populations. These exceeded reported values for other cervid species that experienced similar population declines within the past century. The recovery programme was successful in that deer were restored to their former range while maintaining high and uniform genetic variability. Our results seem to confirm the importance of rapid population expansion and habitat continuity in retaining genetic variation in restored populations. However, the use of diverse transplant stocks and the varied demographic histories of populations resulted in fine-scale genetic structuring.  相似文献   
143.
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.  相似文献   
144.
We describe a 7-month-old male child with Silver-Russel syndrome (SRS) phenotype, presented with two major clinical features: low birth weight, short stature, and minor features, such as macrocephaly, clinodactyly, essential for the diagnosis of SRS. Routine cytogenetic studies with GTG-banding showed 46,XY,t(11;16)(p13;q24.3). Fluorescence in situ hybridisation (FISH) with single copy probes BAC (11p13) and PAC (16q24.3), showed a reciprocal translocation. Chromosomal analysis of the mother was normal and the phenotypically normal father had apparently identical translocation t(11;16)(p13;q24.3). The disruption of growth factor genes at 11p and 16q breakpoint regions due to reciprocal translocation in the father might have caused SRS phenotype in the child.  相似文献   
145.
We report a case of a reciprocal translocation between the long arms of the 2 and 10 chromosomes observed in a 14-year-old male with mild mental impairment, compulsive and obsessive behavior. The apparently balanced translocation was characterized by fluorescence in situ hybridization and the karyotype was 46, XY, t(2;10)(q24;q22). The way by balanced chromosomal translocations can lead to a disease phenotype are reviewed and discussed.  相似文献   
146.
Jackson JB 《FEBS letters》2003,545(1):18-24
Transhydrogenase, in animal mitochondria and bacteria, couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. Within the protein, the redox reaction occurs at some distance from the proton translocation pathway and coupling is achieved through conformational changes. In an 'open' conformation of transhydrogenase, in which substrate nucleotides bind and product nucleotides dissociate, the dihydronicotinamide and nicotinamide rings are held apart to block hydride transfer; in an 'occluded' conformation, they are moved into apposition to permit the redox chemistry. In the two monomers of transhydrogenase, there is a reciprocating, out-of-phase alternation of these conformations during turnover.  相似文献   
147.
The Ras homology (Rho) guanine nucleotide exchange factor p115-RhoGEF couples the alpha(13) heterotrimeric guanine nucleotide binding protein (G protein) subunit to Rho GTPase. Alpha(13) binds to a regulator of G protein signaling (RGS) domain in p115-RhoGEF, but the mechanism of alpha(13) activation of p115-RhoGEF is poorly understood. In this report, we demonstrate in cell-based assays that the acidic-rich N-terminus, adjacent to the RGS domain, is required for binding to activated alpha(13), and refine the importance of this region by showing that mutation of glutamic acids 27 and 29 in full-length p115-RhoGEF is sufficient to prevent interaction with activated alpha(13). However, alpha(13)-interacting deficient N-terminal mutants of p115-RhoGEF retain alpha(13)-dependent plasma membrane recruitment. Overall, these findings demonstrate a critical role for the N-terminal extension of p115-RhoGEF in mediating binding to alpha(13) and dissociate two activities of p115-RhoGEF: binding to activated alpha(13) and translocation to the PM in response to activated alpha(13).  相似文献   
148.
Testicular activity and semen characteristics of bulls carrying an X-autosome translocation t(Xp +;23q-) revealed all stages of spermatogenesis although their semen consisted of few and, exclusively, of malformed spermatozoa. Chromosome painting on metaphase spreads of their mother and synaptonemal complex analysis on these and normal bulls were carried out to test whether the location and meiotic pairing behaviour of the rearranged segments could have contributed to the sperm head malformation and oligospermia in our X-autosome translocation (X-AT) carrier bulls. Spermatocytes of X-AT carriers displayed the rearranged chromosomes in a univalent-trivalent association, with 23q- always remaining as a univalent and Xp + in synapsis with normal chromosome 23 and the Y chromosome. Chromosome painting studies to test whether the total absence of meiocytes showing a quadrivalent is due to the non-reciprocal nature of this translocation, identified Xp sequence homology with the distal end of 23q- confirming its relocation to the terminal segment of 23q-. Our synaptonemal complex analyses also confirmed that the bovine pseudo-autosomal region (PAR) is at the distal ends of Xq and Yp and further revealed that over 85% of spermatocytes of X-AT carriers (and up to 13% of spermatocytes of normal bulls) sustain a Y-axis break adjacent to the PAR. Although the exact cause of a Y-axis break in bovine spermatocytes is not known at present, we believe that the break and possible loss of Yq in such high proportions of spermatocytes of X-AT carriers could have contributed to the sperm head malformation and oligospermia in our X-AT carrier bulls.  相似文献   
149.
An 18-day experiment was conducted to investigate the uptake and sublethal toxicity of dietary Ni in adult lake whitefish (LWF, Coregonus clupeaformis) and lake trout (LT, Salvelinus namaycush) fed diets containing 0, 1000 and 10000 microg Ni/g, prepared with and without brine shrimp. The results of this experiment were used to design an experiment of longer duration in which one of the fish species was selected and exposed to lower dietary Ni doses. In the present study feed refusal was observed in LT and LWF fed 10000 microg Ni/g, after three and 4-5 feedings, respectively. LT fed Ni-contaminated diets exhibited different patterns of Ni accumulation than LWF. Increased Ni concentrations in all LWF tissues, except the intestine, were associated with increased doses of Ni. Copper and Zn concentrations in kidney and liver of LWF were altered. Metallothionein concentrations in kidneys of LT fed 1000 microg Ni/g and 10000 microg Ni/g and LWF fed 10000 microg Ni/g and in livers of LWF fed 10000 microg Ni/g (diet without shrimp only) increased significantly. Increased lipid peroxide production in the plasma of LT fed 10000 microg Ni/g was observed. Blood glucose and electrolytes were affected by Ni exposure. Histopathological alterations were observed in kidneys of LWF fed low and high dose diets, livers of whitefish fed high dose diets, and intestines of LWF fed high dose diets and LT fed low and high dose diets. LT fed high dose diets exhibited significant decreases in weight.  相似文献   
150.
Heat-stable enterotoxin II of Escherichia coli (STII) is synthesized as a precursor form consisting of pre- and mature regions. The pre-region is cleaved off from the mature region during translocation across the inner membrane, and the mature region emerges in the periplasm. The mature region, composed of 48 amino acid residues, is processed in the periplasm by DsbA to form an intramolecular disulfide bond between Cys-10 and Cys-48 and between Cys-21 and Cys-36. STII formed with these disulfide bonds is efficiently secreted out of the cell through the secretory system, including TolC. However, it remains unknown which regions of STII are involved in interaction with TolC. In this study, we mutated the STII gene and examined the secretion of these STIIs into the culture supernatant. A deletion of the part covering from amino acid residue 37 to the carboxy terminal end did not markedly reduce the efficiency of secretion of STII into the culture supernatant. On the other hand, the efficiency of secretion of the peptide covering from the amino terminal end to position 18 to the culture supernatant was significantly low. These observations indicated that the central region of STII from amino acid residue 19 to that at position 36 is involved in the secretion of STII into the milieu. The experiment using a dsbA-deficient strain of E. coli showed that the disulfide bond between Cys-21 and Cys-36 by DsbA is necessary for STII to adapt to the structure that can cross the outer membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号