首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   121篇
  国内免费   13篇
  2024年   6篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   38篇
  2019年   55篇
  2018年   45篇
  2017年   19篇
  2016年   25篇
  2015年   29篇
  2014年   20篇
  2013年   19篇
  2012年   13篇
  2011年   22篇
  2010年   15篇
  2009年   26篇
  2008年   15篇
  2007年   16篇
  2006年   13篇
  2005年   13篇
  2004年   11篇
  2003年   14篇
  2002年   9篇
  2001年   8篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1975年   1篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
31.
Spinel‐structured LiMn2O4 (LMO) is a desirable cathode material for Li‐ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single‐layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene‐coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X‐ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single‐layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn3+ at the LMO electrode surface, promoting an oxidation state change to Mn4+, which suppresses dissolution.  相似文献   
32.
33.
Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm?2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles (<200 nm) are sustained under CO2 electrolysis conditions at high temperatures than for Ni–Fe. X‐ray diffraction analysis suggests that the main phases of Ni–Fe–LSFM are Ni and LaFeO3; thus, the oxide phase of LaFeO3 is also maintained during CO2 electrolysis. Analysis of the gaseous products indicates that only CO is formed, and the rate of CO formation agrees well with that of a four‐electron reduction process, suggesting that the reduction of CO2 to CO proceeds selectively. It is also confirmed that almost no coke is deposited on the Ni–Fe–LSFM cathode after CO2 electrolysis.  相似文献   
34.
Partially amorphous La0.6Sr0.4CoO3‐δ (LSC) thin‐film cathodes are fabricated using pulsed laser deposition and are integrated in free‐standing micro‐solid oxide fuel cells (micro‐SOFC) with a 3YSZ electrolyte and a Pt anode. A low degree of crystallinity of the LSC layers is achieved by taking advantage of the miniaturization of the cells, which permits low‐temperature operation (300–450 °C). Thermomechanically stable micro‐SOFC are obtained with strongly buckled electrolyte membranes. The nanoporous columnar microstructure of the LSC layers provides a large surface area for oxygen incorporation and is also believed to reduce the amount of stress at the cathode/electrolyte interface. With a high rate of failure‐free micro‐SOFC membranes, it is possible to avoid gas cross‐over and open‐circuit voltages of 1.06 V are attained. First power densities as high as 200–262 mW cm?2 at 400–450 °C are achieved. The area‐specific resistance of the oxygen reduction reaction is lower than 0.3 Ω cm2 at 400 °C around the peak power density. These outstanding findings demonstrate that partially amorphous oxides are promising electrode candidates for the next‐generation of solid oxide fuel cells working at low‐temperatures.  相似文献   
35.
36.
37.
In materials containing 1D lithium diffusion channels, cation disorder can strongly affect lithium intercalation processes. This work presents a model to explain the unusual transport properties of monoclinic LiMnBO3, a material determined by scanning electron microscopy and synchrotron X‐ray diffraction to contain a wide particle size distribution and Mn/Li antisite disorder. First‐principles calculations indicate that Mn occupying Li sites obstruct the 1D lithium diffusion channel along the [001] direction. While channel blockage by the antisites significantly lowers Li mobility in large particles, Li kinetics in small particles and particle surfaces are found to be less sensitive to the presence of antisite disorder. Thus, in an electrode containing a large particle size distribution, smaller particles have higher Li mobility, and the measured Li diffusivity as determined by potentiostatic intermittent titration test varies as a function of particle size. The Li capacity in monoclinic LiMnBO3 is kinetically controlled by the fraction of large particles with antisite disorder, but is not intrinsically limited. These results strongly suggest that particle nanosizing will significantly enhance the electrochemical performance of LiMnBO3.  相似文献   
38.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   
39.
Solid oxide fuel cells (SOFCs) represent one of the cleanest and most efficient options for the direct conversion of a wide variety of fuels to electricity. For example, SOFCs powered by natural gas are ideally suited for distributed power generation. However, the commercialization of SOFC technologies hinges on breakthroughs in materials development to dramatically reduce the cost while enhancing performance and durability. One of the critical obstacles to achieving high‐performance SOFC systems is the cathodes for oxygen reduction reaction (ORR), which perform poorly at low temperatures and degrade over time under operating conditions. Here a comprehensive review of the latest advances in the development of SOFC cathodes is presented: complex oxides without alkaline earth metal elements (because these elements could be vulnerable to phase segregation and contaminant poisoning). Various strategies are discussed for enhancing ORR activity while minimizing the effect of contaminant on electrode durability. Furthermore, some of the critical challenges are briefly highlighted and the prospects for future‐generation SOFC cathodes are discussed. A good understanding of the latest advances and remaining challenges in searching for highly active SOFC cathodes with robust tolerance to contaminants may provide useful guidance for the rational design of new materials and structures for commercially viable SOFC technologies.  相似文献   
40.
The mononuclear nickel(II) complexes with the first-generation quinolone antibacterial agent oxolinic acid in the presence or absence of nitrogen-donor heterocyclic ligands (2,2′-bipyridine, 1,10-phenanthroline or pyridine) have been synthesized and characterized. The experimental data suggest that oxolinic acid acts as deprotonated bidentate ligand coordinated to Ni(II) ion through the ketone and carboxylato oxygens. The crystal structure of (2,2′-bipyridine)bis(oxolinato) nickel(II), 2 has been determined by X-ray crystallography. The cyclic voltammograms of the complexes recorded in dmso solution and in 1/2 dmso/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of calf-thymus DNA (CT DNA) they can bind to CT DNA by the intercalative binding mode. UV study of the interaction of the complexes with CT DNA has shown that the complexes bind to CT DNA and bis(aqua)bis(oxolinato) nickel(II) exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号