首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1154篇
  免费   65篇
  国内免费   15篇
  1234篇
  2023年   15篇
  2022年   16篇
  2021年   12篇
  2020年   21篇
  2019年   30篇
  2018年   28篇
  2017年   12篇
  2016年   17篇
  2015年   32篇
  2014年   37篇
  2013年   52篇
  2012年   22篇
  2011年   58篇
  2010年   53篇
  2009年   63篇
  2008年   78篇
  2007年   71篇
  2006年   60篇
  2005年   61篇
  2004年   50篇
  2003年   33篇
  2002年   35篇
  2001年   17篇
  2000年   11篇
  1999年   22篇
  1998年   23篇
  1997年   38篇
  1996年   23篇
  1995年   35篇
  1994年   20篇
  1993年   10篇
  1992年   16篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   12篇
  1987年   9篇
  1986年   3篇
  1985年   15篇
  1984年   15篇
  1983年   27篇
  1982年   25篇
  1981年   12篇
  1980年   11篇
  1979年   10篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
排序方式: 共有1234条查询结果,搜索用时 12 毫秒
31.
Summary Polyethylene glycol, a known cell fusogen, is found to induce the formation of structural defects in egg phosphatidylcholine multilamellar vesicles, as shown by freeze-fracture microscopy.31P NMR spectra of these vesicles reveal the existence of a nonbilayer (isotropic) phase. The observed disruption in the bilayers is believed to be associated with an intermediate stage of membrane fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry - DMPC Dimyristoylphosphatidylcholine - T c Phase transition temperature  相似文献   
32.
33.
From the bulbils of Dioscorea bulbifera L. var sativa, two clerodane diterpenoids, Bafoudiosbulbins F (1) and G (2), together with five known compounds: Bafoudiosbulbins A-C, 3,5,4'-trihydroxy-3'-methoxybibenzyl, and kaempferol were isolated. Their structures were established by spectroscopic techniques, including (1)H, (13)C NMR, NOESY, ROESY, COSY, TOCSY, HSQC, and HMBC. The relative stereochemistry of compounds 1 and 2 was assigned on the basis of X-ray crystallographic diffraction analysis. Furthermore, the structure of Bafoudiosbulbin B was revised using extensive 2D NMR techniques as well as chemical transformation.  相似文献   
34.
Chicken liver basic fatty acid-binding protein (pI = 9.0) has been purified with a high yield by a modification of a method originally applied to rat liver. The final product is highly homogeneous and can be used to grow crystals that belong to two different space groups. The crystals are either tetragonal, space group P42212 with a = b = 60.2 Å and c = 138.1 Å or orthorhombic, space group P212121 with a = 60.7 Å, b = 40.1 Å and c = 66.7 Å. The second form appears to be more suitable for X-ray diffraction studies, it diffracts to at least 2.8 Å resolution and it is believed to contain one protein molecule in the crystallographic asymmetric unit.  相似文献   
35.
Guo P  Su Y  Cheng Q  Pan Q  Li H 《Carbohydrate research》2011,(7):986-990
The 1:1 inclusion complex of β-cyclodextrin and p-aminobenzoic acid was prepared and characterized by TG-DTA. The crystal structure of the complex was solved directly from powder X-ray diffraction data using the direct space approach and refined using Rietveld refinement techniques. The complex crystallizes in monoclinic P21 space group, with unit cell parameters a = 20.7890 ?, b = 10.2084 ?, c = 15.1091 ?, β = 110.825°, V = 2997 ?3. The amino group is located at the wide side of the β-cyclodextrin cavity, forming hydrogen bonds with β-cyclodextrin, and the carboxyl group is located at the narrow side. The crystallographic data obtained from powder diffraction data were compared with the single crystallographic data, and the result shows that solving crystal structure of cyclodextrins inclusion complexes of such complexity is accessible to powder diffractionists to some extent.  相似文献   
36.
Internal motions of d-ribose selectively 2H-labeled at the 2 position were measured using solid state 2H NMR experiments. A sample of d-ribose-2 -d was prepared in a hydrated, non-crystalline state to eliminate effects of crystal-packing. Between temperatures of –74 and –60°C the C2–H2 bond was observed to undergo two kinds of motions which were similar to those of C2–H2/H2 found previously in crystalline deoxythymidine (Hiyama et al. (1989) J. Am. Chem. Soc., 111, 8609–8613): (1) Nanosecond motion of small angular displacement with an apparent activation energy of 3.6 ± 0.7 kcal mol–1, and (2) millisecond to microsecond motion of large amplitude with an apparent activation energy 4 kcal mol–1. At –74°C, the slow, large-amplitude motion was best characterized as a two-site jump with a correlation time on the millisecond time scale, whereas at –60°C it was diffusive on the microsecond time scale. The slow, large-amplitude motions of the C2–H2 bond are most likely from interconversions between C2-endo and C3-endo by way of the O4-endo conformation, whereas the fast, small-amplitude motions are probably librations of the C2–H2 bond within the C2-endo and C3-endo potential energy minima.  相似文献   
37.
Oh SY  Yoo DI  Shin Y  Kim HC  Kim HY  Chung YS  Park WH  Youk JH 《Carbohydrate research》2005,340(15):2376-2391
Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.  相似文献   
38.
Protein crystals, routinely prepared for the elucidation of protein 3D structures by X-ray crystallography, present an ordered and highly accurate 3D array of protein molecules. Inherent to the 3D arrangement of the protein molecules in the crystal is a complementary 3D array of voids made of interconnected cavities and exhibiting highly ordered porosity. The permeability of the porosity of chemically crosslinked enzyme protein crystals to low molecular weight solutes, was used for enzyme mediated organic synthesis and size exclusion chromatography. This permeability might be extended to explore new potential applications for protein crystals, for example, their use as bio-templates for the fabrication of novel, nano-structured composite materials. The quality of composites obtained from "filling" of the ordered voids in protein crystals and their potential applications will be strongly dependent upon an accurate preservation of the order in the original protein crystal 3D array during the "filling" process. Here we propose and demonstrate the feasibility of monitoring the changes in 3D order of the protein array by a step-by-step molecular level monitoring of a model system for hydrogel bio-templating by glutaraldehyde crosslinked lysozyme crystals. This monitoring is based on step-by-step comparative analysis of data obtained from (i) X-ray crystallography: resolution, unit cell dimensions and B-factor values and (ii) fluorescence decay kinetics of ultra-fast laser activated dye, impregnated within these crystals. Our results demonstrated feasibility of the proposed monitoring approach and confirmed that the stabilized protein crystal template retained its 3D structure throughout the process.  相似文献   
39.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   
40.
In this paper, europium‐doped strontium aluminate (SrAl2O4:Eu2+) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X‐ray diffractometry (XRD), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2O4:Eu2+ phosphor. The optical properties of SrAl2O4:Eu2+ phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2O4:Eu2+ phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2O4:Eu2+ phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号