首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3805篇
  免费   165篇
  国内免费   189篇
  2024年   3篇
  2023年   28篇
  2022年   35篇
  2021年   60篇
  2020年   68篇
  2019年   75篇
  2018年   84篇
  2017年   62篇
  2016年   65篇
  2015年   96篇
  2014年   160篇
  2013年   195篇
  2012年   120篇
  2011年   175篇
  2010年   123篇
  2009年   158篇
  2008年   204篇
  2007年   182篇
  2006年   145篇
  2005年   138篇
  2004年   124篇
  2003年   100篇
  2002年   109篇
  2001年   88篇
  2000年   90篇
  1999年   80篇
  1998年   79篇
  1997年   86篇
  1996年   74篇
  1995年   100篇
  1994年   82篇
  1993年   96篇
  1992年   84篇
  1991年   88篇
  1990年   71篇
  1989年   88篇
  1988年   72篇
  1987年   66篇
  1986年   54篇
  1985年   55篇
  1984年   58篇
  1983年   61篇
  1982年   66篇
  1981年   34篇
  1980年   27篇
  1979年   22篇
  1978年   11篇
  1977年   7篇
  1974年   3篇
  1971年   2篇
排序方式: 共有4159条查询结果,搜索用时 15 毫秒
91.
Abstract: The total Ca2+-dependent release of glutamate induced by depolarization of cerebrocortical nerve terminals with KCl was analyzed into a fast and a slow component. The fast component exhibited a decay time of <1 s and accounted for 0.95 ± 0.10 nmol of glutamate, whereas the slow component, which exhibited a decay time of 52 ± 7 s, accounted for the release of 2.48 ± 0.19 nmol of glutamate. These two components were differentially affected by the Ca2+ chelator BAPTA, the divalent cation Sr2+, or the botulinum neurotoxin A. The adenosine A1 receptor agonist N 6-cyclohexyladenosine strongly reduced the fast component without altering the slow component. In contrast, the inhibitory effect of arachidonic acid and the facilitatory action of the metabotropic glutamate receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid were observed as a decrease and an increase, respectively, in the two components. It is concluded, first, that the fast and slow components correspond to the release of docked and mobilized vesicles, respectively, and second, that presynaptic modulation more significantly alters the fast component of release.  相似文献   
92.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   
93.
Abstract: To determine whether protein kinase C (PKC) mediates release of peptides from sensory neurons, we examined the effects of altering PKC activity on resting and evoked release of substance P (SP) and calcitonin gene-related peptide (CGRP). Exposing rat sensory neurons in culture to 10 or 50 n M phorbol 12,13-dibutyrate (PDBu) significantly increased SP and CGRP release at least 10-fold above resting levels, whereas the inactive 4α-PDBu analogue at 100 n M had no effect on release. Furthermore, 100 n M bradykinin increased peptide release approximately fivefold. Down-regulation of PKC significantly attenuated the release of peptides evoked by either PDBu or bradykinin. PDBu at 1 n M or 1-oleoyl-2-acetyl- sn -glycerol at 50 µ M did not alter resting release of peptides, but augmented potassium- and capsaicin-stimulated release of both SP and CGRP approximately twofold. This sensitizing action of PKC activators on peptide release was significantly reduced by PKC down-regulation or by pretreating cultures with 10 n M staurosporine. These results establish that activation of PKC is important in the regulation of peptide release from sensory neurons. The PKC-induced enhancement of peptide release may be a mechanism underlying the neuronal sensitization that produces hyperalgesia.  相似文献   
94.
Abstract: Aromatase in the diencephalic neurons, the level of which increases transiently during the prenatal to neonatal period, has been suggested to be involved in control of sexual behavior and differentiation of the CNS. Effects of neurotransmitters on levels of aromatase mRNA in cultured neurons were investigated to determine factors regulating the developmental increase that occurs in level of fetal brain aromatase. The expression of aromatase in diencephalic neurons of fetal mice at embryonic day 13, cultured in vitro, was significantly affected by α1-adrenergic receptor ligands. Aromatase mRNA levels were higher in neurons treated with the α1-agonist phenylephrine than in control neurons, whereas prazosin, an α1-antagonist, suppressed this increase, and ligands for α2- or β-adrenergic receptors did not exert any influence. The profile of α1-adrenergic receptor subtypes during actual development in vivo suggested that the α1B subtype is in fact responsible for the signal transduction. Substance P, cholecystokinin, neurotensin, and brain natriuretic peptide also increased the level of expression along with phorbol 12-myristate 13-acetate and dibutyryl-cyclic GMP, whereas forskolin and dibutyryl-cyclic AMP caused a decrease. These data indicate that stimulation via α1 (possibly α1B)-adrenergic receptors, as well as receptors of specific neuropeptides, controls the expression of aromatase in embryonic day 13 diencephalic neurons through activation of protein kinase C or G. β-Adrenergic receptors would not appear to participate in the regulation, judging from their developmental profile, although cyclic AMP might be a suppressive second messenger.  相似文献   
95.
The effects of α-glycerylphosphorylcholine (α-GPC) on endogenous cortical GABA release were studied both in vivo and in vitro. In freely moving rats, equipped with epidural cups, α-GPC (30–300 mg/kg i.p.) increased GABA release. This effect was potentiated by atropine, both systematically administered (5 mg/kg i.p.) and locally applied (1.4 μM), but not by mecamylamine (4 mg/kg i.p.). The α-GPC-induced increasein GABA release was abolished in rats pretreated with the α1 receptor antagonist prazosin (14 μg/kg i.p.). In cortical slices α-GPC (0.4 mM) increased the spontaneous GABA efflux. This effectwas abolished by tetrodotoxin (0.5 μM) and prazosin (1 μM), but not by atropine (0.15 μM) ormecamylamine (2.5μM). These results indicate that the facilitatory response by α-GPC on GABArelease does not depend on a direct activation of either muscarinic or nicotinic receptors, but suggest the involvement of the noradrenergic system.  相似文献   
96.
Independently of their agonistic or antagonistic activity on different isolated tissue preparations, the kinin analogues investigated induce histamine release on rat peritoneal mast cells. The effectivity of most compounds is 10 to 100 times higher than that of bradykinin. Beside the positively charged amino acids, the elongation at the N-terminus with hydrophobic amino acids and the replacement of amino acids in the bradykinin sequence (especially at position 7) with aromatic residues is important for a high histamine-releasing activity.  相似文献   
97.
Wide ranging studies of the readthrough of translational stop codons within the last 25 years have suggested that the stop codon might be only part of the molecular signature for recognition of the termination signal. Such studies do not distinguish between effects on suppression and effects on termination, and so we have used a number of different approaches to deduce whether the stop signal is a codon with a context or an extended factor recognition element. A data base of natural termination sites from a wide range of organisms (148 organisms, 40000 sequences) shows a very marked bias in the bases surrounding the stop codon in the genes for all organisms examined, with the most dramatic bias in the base following the codon (+4). The nature of this base determines the efficiency of the stop signal in vivo, and in Escherichia coli this is reinforced by overexpressing the stimulatory factor, release factor-3. Strong signals, defined by their high relative rates of selecting the decoding release factors, are enhanced whereas weak signals respond relatively poorly. Site-directed cross-linking from the +1, and bases up to +6 but not beyond make close contact with the bacterial release factor-2. The translational stop signal is deduced to be an extended factor recognition sequence with a core element, rather than simply a factor recognition triplet codon influenced by context.  相似文献   
98.
Neuronal communication involves the fusion of neurotransmitter filled synaptic vesicles with the presynaptic terminal. This exocytotic event depends upon proteins present in three separate compartments: the synaptic vesicle, the synaptic cytosol, and the presynaptic membrane. Recent data indicate that the basic components of exocytotic pathways, including those used for neurotransmitter release, are conserved from yeast to human. Genetic dissection of the secretory pathway in yeast, identification of the target proteins cleaved by the clostridial neurotoxins and biochemical characterization of the interactions of synaptic proteins from vertebrates have converged to provide the SNARE (soluble NSF attachment protein receptor) hypothesis for vesicle trafficking. This model proposes that proteins present in the vesicle (v-SNAREs) interact with membrane receptors (t-SNAREs) to provide a molecular scaffold for cytosolic proteins involved in fusion. The hypothesis that these mechanisms function at the synapse relies largely uponin vitro evidence. Recently, genetic approaches in mice, C.elegans and the fruitfly,Drosophila melanagaster, have been used to dissect thein vivo function of numerous proteins involved in synaptic transmission. This review covers recent progress and insights provided by a genetic dissection of neurotransmitter release inDrosophila. In addition, we will provide evidence that the mechanisms for synaptic communication are highly conserved from invertebrates to vertebrates, makingDrosophila an ideal model system to further unravel the intricacies of synaptic transmission.  相似文献   
99.
Abstract: Recently, we reported that 6 R - l - erythro -tetrahydrobiopterin (6 R -BH4), a natural cofactor for hydroxylases of tyrosine and tryptophan, has a monoamine-releasing action independent of its cofactor activity. Here we attempted to determine whether 6 R -BH4 acts inside the cell or from the outside of the cell by using brain microdialysis in the rat striatum. For this purpose, sepiapterin, an immediate precursor of 6 R -BH4 in the salvage pathway, was used to selectively increase the intracellular 6 R -BH4 levels. Dialytic perfusion of sepiapterin increased tissue levels of reduced biopterin (mainly 6 R -BH4) but not the extracellular levels. Administration of sepiapterin increased the extracellular levels of 3,4-dihydroxyphenylalanine (DOPA) (an index of in vivo tyrosine hydroxylase activity) and of dopamine (DA) (an index of in vivo DA release). Either of the increases was eliminated after pretreatment with a tyrosine hydroxylase inhibitor α-methyl- p -tyrosine. Administration of 6 R -BH4 increased extracellular levels of reduced biopterin, DOPA, and DA. After pretreatment with α-methyl- p -tyrosine, the increase in DOPA levels was abolished, but most of the increase in DA levels persisted. The increase in DA levels also persisted after pretreatment with nitric oxide synthase inhibitors. These data demonstrate that 6 R -BH4 stimulates DA release directly, independent of its cofactor action for tyrosine hydroxylase and nitric oxide synthase, by acting from the outside of neurons.  相似文献   
100.
Abstract: Fenfluramine is the most widely used anorexigenic drug in humans. In animal experiments d -fenfluramine has been shown to act as a potent releaser of brain serotonin [5-hydroxytryptamine (5-HT)]. Here we have investigated the effects of d -fenfluramine on the release of [3H]5-HT from isolated nerve endings of human neocortex. The drug elicited release of unmetabolized [3H]5-HT, and this effect was concentration dependent. However, the mechanism of release seems to differ profoundly depending on the concentrations of d -fenfluramine used. At 5 µ M , the release of [3H]5-HT was blocked by the 5-HT transporter inhibitor fluoxetine and was Ca2+ independent and insensitive to the human autoreceptor 5-HT1D agonist sumatriptan. The release of [3H]5-HT elicited by 0.5 µ M d -fenfluramine was similarly blocked by fluoxetine, but it was strongly Ca2+ dependent and sensitive to sumatriptan. It is suggested that, at relatively high concentrations, d -fenfluramine largely diffuses into serotonergic terminals and causes release of 5-HT through the 5-HT carrier working in the inside-outside direction; at relatively low concentrations d -fenfluramine enters the terminals through the 5-HT transporter but elicits release of 5-HT by an exocytotic-like mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号