首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317篇
  免费   28篇
  国内免费   11篇
  1356篇
  2023年   9篇
  2022年   15篇
  2021年   11篇
  2020年   16篇
  2019年   15篇
  2018年   13篇
  2017年   16篇
  2016年   20篇
  2015年   24篇
  2014年   62篇
  2013年   47篇
  2012年   58篇
  2011年   51篇
  2010年   34篇
  2009年   51篇
  2008年   44篇
  2007年   38篇
  2006年   59篇
  2005年   48篇
  2004年   54篇
  2003年   43篇
  2002年   26篇
  2001年   25篇
  2000年   24篇
  1999年   19篇
  1998年   25篇
  1997年   22篇
  1996年   45篇
  1995年   43篇
  1994年   34篇
  1993年   38篇
  1992年   46篇
  1991年   41篇
  1990年   36篇
  1989年   29篇
  1988年   24篇
  1987年   12篇
  1986年   20篇
  1985年   37篇
  1984年   29篇
  1983年   18篇
  1982年   15篇
  1981年   11篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
排序方式: 共有1356条查询结果,搜索用时 15 毫秒
71.
Recently, we have demonstrated that guinea-pig epicardial coronary arteries are supplied by numerous nerve fibres containing neuropeptide Y (NPY) immunoreactivity. However, examination of vasomotor responses revealed that NPY did not elicit a contractile response in these arteries. In contrast, acetylcholine (ACh), calcitonin gene-related peptide (CGRP), substance P and vasoactive intestinal polypeptide (VIP) all relaxed precontracted arteries. In the present study, we have used histochemical, immunohistochemical and in vitro pharmacological techniques, in order to further investigate the possible role of NPY in guinea-pig epicardial coronary arteries. A double-immunofluorescence staining technique revealed that CGRP and substance P were co-localized in nerve fibres distinct from those displaying NPY immunoreactivity. Furthermore, using a method combining immunofluorescence and histochemical techniques, we observed that putative cholinergic nerve fibres (identified by their acetylcholinesterase content) and NPY-immunoreactive nerve fibres are two different nerve populations. An in vitro pharmacological method demonstrated that NPY markedly inhibited the relaxant responses mediated by ACh, VIP, substance P and isoprenaline but had no effect on CGRP. These results suggest that NPY-containing nerves associated with guinea-pig epicardial coronary arteries may be predominantly involved in modulating the action of vasodilator agents.  相似文献   
72.
The neurokinin A-like immunoreactivity in an extract of rabbit small intestine was resolved into two molecular forms by gel permeation chromatography. These components were purified to apparent homogeneity by reverse-phase HPLC. The primary structure of the larger component was established as the following: Asp-Ala-Gly-His-Gly-Gln-Ile-Ser-His-Lys-Arg-His-Lys-Thr-Asp-Ser-Phe-Val- Gly-Leu - Met.NH2. This amino acid sequence represents residues (72-92) of gamma-preprotachykinin, as predicted from the nucleotide sequence of a cloned cDNA from the rat. The peptide, termed neuropeptide-gamma, lacks residues (3-17) of neuropeptide K, and this segment is specified exactly by exon 4 in the preprotachykinin gene. The smaller form of neurokinin A-like immunoreactivity was identical to neurokinin A. Neuropeptide K was not present in the extract, demonstrating that the pathways of post-translational processing of beta- and gamma-preprotachykinins in the rabbit gut are different.  相似文献   
73.
Several neurotransmitters including serotonin and glutamate have been shown to be involved in many aspects of neural development, such as neurite outgrowth, regulation of neuronal morphology, growth cone motility and dendritic spine shape and density, in addition to their well-established role in neuronal communication. This review focuses on recent advances in our understanding of the molecular mechanisms underlying neurotransmitter-induced changes in neuronal morphology. In the first part of the review, we introduce the roles of small GTPases of the Rho family in morphogenic signaling in neurons and discuss signaling pathways, which may link serotonin, operating as a soluble guidance factor, and the Rho GTPase machinery, controlling neuronal morphology and motility. In the second part of the review, we focus on glutamate-induced neuroplasticity and discuss the evidence on involvement of Rho and Ras GTPases in functional and structural synaptic plasticity triggered by the activation of glutamate receptors.  相似文献   
74.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   
75.
Summary A two-chain polypeptide, which corresponds to amino acid residues 115–143 and 144–184(185) of bovine serum albumin, connected to each other by a disulfide bridge, potentiated the effects of insulin on glucose transport and glucose metabolism in isolated rat adipocytes. Although the peptide alone had little activity, it shifted the concentration-response curves of insulin-stimulated D-[I-14C]glucose oxidation, 2-deoxyglucose transport, and lipid synthesis from D-[U-14C]glucose to lower insulin concentrations. It also increased the maximal responses of these parameters to insulin. However, it did not affect insulin binding to adipocytes. The peptide protected insulin considerably from degradation, but this effect alone cannot account for its effect in increasing the maximal responses to the hormone, and even when degradation of a submaximal concentration of insulin was suppressed by bacitracin, the peptide still had an enhancing effect. These results suggest not only that the peptide influences a step distal to receptor-mediated insulin binding but also that inhibition of insulin degradation alone cannot explain its total effect.The peptide lost its insulin-stimulating activity completely when it was further digested with V8 or lysinespecific endopeptidase, or when it was reduced and then carboxamidomethylated or oxidized with performic acid. Similar active tryptic fragments were obtained from human and rat albumins.Insulin-stimulating peptides should be useful in studies on the mechanisms of insulin action including both the sensitivities and responsiveness of target cells to the hormone.Abbreviations ISP insulin-stimulating peptide - HEPES N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - HPLC high-performance liquid chromatography - SDS sodium dodecyl sulfate  相似文献   
76.
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.  相似文献   
77.
The localization of neuropeptide Y (NPY) and atrial natriuretic peptide (ANP) in the endothelial cells of human umbilical blood vessels was studied using the pre-embedding peroxidase-antiperoxidase (PAP) technique for electron microscopy and avidin-biotin-complex (ABC) immunostaining for endothelial cells cultured from umbilical vein. Subpopulations of NPY- and ANP-immunoreactive endothelial cells were present in term umbilical vein and artery. The umbilical vein contained more positive cells than the artery. The percentage of NPY- and ANP-immunoreactive umbilical vein cells in culture was 32% and 44%, respectively, out of a total of 3013 cells examined. The possibility that these potent vasoactive substances located in the endothelial cells of the non-innervated umbilical vessels are involved in the local regulation of blood flow is discussed.  相似文献   
78.
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.  相似文献   
79.
80.
Cross-talk between the immune- and nervous-system is considered an important biological process in health and disease. Because mast cells are often strategically placed between nerves and surrounding (immune)-cells they may function as important intermediate cells. This review summarizes the current knowledge on bidirectional interaction between mast cells and nerves and its possible relevance in (inflammation-induced) increased nociception. Our main focus is on mast cell mediators involved in sensitization of TRP channels, thereby contributing to nociception, as well as neuron-released neuropeptides and their effects on mast cell activation. Furthermore we discuss mechanisms involved in physical mast cell-nerve interactions. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号