全文获取类型
收费全文 | 752篇 |
免费 | 12篇 |
国内免费 | 3篇 |
专业分类
767篇 |
出版年
2023年 | 6篇 |
2022年 | 7篇 |
2021年 | 4篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 7篇 |
2017年 | 7篇 |
2016年 | 16篇 |
2015年 | 14篇 |
2014年 | 24篇 |
2013年 | 24篇 |
2012年 | 39篇 |
2011年 | 34篇 |
2010年 | 23篇 |
2009年 | 27篇 |
2008年 | 27篇 |
2007年 | 13篇 |
2006年 | 25篇 |
2005年 | 19篇 |
2004年 | 21篇 |
2003年 | 15篇 |
2002年 | 9篇 |
2001年 | 8篇 |
2000年 | 6篇 |
1999年 | 11篇 |
1998年 | 11篇 |
1997年 | 15篇 |
1996年 | 19篇 |
1995年 | 33篇 |
1994年 | 27篇 |
1993年 | 27篇 |
1992年 | 33篇 |
1991年 | 33篇 |
1990年 | 26篇 |
1989年 | 20篇 |
1988年 | 16篇 |
1987年 | 10篇 |
1986年 | 15篇 |
1985年 | 28篇 |
1984年 | 21篇 |
1983年 | 16篇 |
1982年 | 12篇 |
1981年 | 7篇 |
1979年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有767条查询结果,搜索用时 15 毫秒
41.
The Gal4-UAS system provides powerful tools to analyze the function of genes and cells in vivo and has been extensively employed in Drosophila. The usefulness of this approach relies on the P element-mediated Gal4 enhancer trapping, which can efficiently generate transgenic fly lines expressing Gal4 in specific cells. Similar approaches, however, had not been developed in vertebrate systems due to the lack of an efficient transgenesis method. We have been developing transposon techniques by using the madaka fish Tol2 element. Taking advantage of its ability to generate genome-wide insertions, we developed the Gal4 gene trap and enhancer trap methods in zebrafish that enabled us to create various transgenic fish expressing Gal4 in specific cells. The Gal4-expressing cells can be visualized and manipulated in vivo by crossing the transgenic Gal4 lines with transgenic lines carrying various reporter and effector genes downstream of UAS (upstream activating sequence). Thus, the Gal4 gene trap and enhancer trap methods together with UAS lines now make detailed analyses of genes and cells in zebrafish feasible. Here, we describe the protocols to perform Gal4 gene trap and enhancer trap screens in zebrafish and their application to the studies of vertebrate neural circuits. 相似文献
42.
N. Aste C. Viglietti-Panzica A. Fasolo C. Andreone H. Vaudry G. Pelletier G. C. Panzica 《Cell and tissue research》1991,265(2):219-230
Summary In the present study, we have demonstrated, by means of the biotin-avidin method, the widespread distribution of neuropeptide Y (NPY)-immunoreactive structures throughout the whole brain of the Japanese quail (Coturnix coturnix japonica). The prosencephalic region contained the highest concentration of both NPY-containing fibres and perikarya. Immunoreactive fibres were observed throughout, particularly within the paraolfactory lobe, the lateral septum, the nucleus taeniae, the preoptic area, the periventricular hypothalamic regions, the tuberal complex, and the ventrolateral thalamus. NPY-immunoreactive cells were represented by: a) small scattered perikarya in the telencephalic portion (i.e. archistriatal, neostriatal and hyperstriatal regions, hippocampus, piriform cortex); b) medium-sized cell bodies located around the nucleus rotundus, ventrolateral, and lateral anterior thalamic nuclei; c) small clustered cells within the periventricular and medial preoptic nuclei. The brainstem showed a less diffuse innervation, although a dense network of immunopositive fibres was observed within the optic tectum, the periaqueductal region, and the Edinger-Westphal, linearis caudalis and raphes nuclei. Two populations of large NPY-containing perikarya were detected: one located in the isthmic region, the other at the boundaries of the pons with the medulla. The wide distribution of NPY-immunoreactive structures within regions that have been demonstrated to play a role in the control of vegetative, endocrine and sensory activities suggests that, in birds, this neuropeptide is involved in the regulation of several aspects of cerebral functions.Abbreviations
AA
archistriatum anterius
-
AC
nucleus accumbens
-
AM
nucleus anterior medialis
-
APP
avian pancreatic polypeptide
-
CNS
centrai nervous system
-
CO
chiasma opticum
-
CP
commissura posterior
-
CPi
cortex piriformis
-
DIC
differential interferential contrast
-
DLAl
nucleus dorsolateralis anterior thalami, pars lateralis
-
DLAm
nucleus dorsolateralis anterior thalami, pars medialis
-
E
ectostriatum
-
EW
nucleus of Edinger-Westphal
-
FLM
fasciculus longitudinalis medialis
-
GCt
substantia grisea centralis
-
GLv
nucleus geniculatus lateralis, pars ventralis
-
HA
hyperstriatum accessorium
-
Hp
hippocampus
-
HPLC
high performance liquid chromatography
-
HV
hyperstriatum ventrale
-
IF
nucleus infundibularis
-
IO
nucleus isthmo-opticus
-
IP
nucleus interpeduncularis
-
IR
immunoreactive
-
LA
nucleus lateralis anterior thalami
-
LC
nucleus linearis caudalis
-
LFS
lamina frontalis superior
-
LH
lamina hyperstriatica
-
LHRH
luteinizing hormone-releasing hormone
-
LoC
locus coeruleus
-
LPO
lobus paraolfactorius
-
ME
eminentia mediana
-
N
neostriatum
-
NC
neostriatum caudale
-
NPY
neuropeptide Y
-
NIII
nervus oculomotorius
-
NV
nervus trigeminus
-
NVI
nervus facialis
-
NVIIIc
nervus octavus, pars cochlearis
-
nIV
nucleus nervi oculomotorii
-
nIX
nucleus nervi glossopharyngei
-
nBOR
nucleus opticus basalis (ectomamilaris)
-
nCPa
nucleus commissurae pallii
-
nST
nucleus striae terminalis
-
OM
tractus occipitomesencephalicus
-
OS
nucleus olivaris superior
-
PA
palaeostriatum augmentatum
-
PBS
phosphate-buffered saline
-
POA
nucleus praeopticus anterior
-
POM
nucleus praeopticus medialis
-
POP
nucleus praeopticus periventricularis
-
PP
pancreatic polypeptide
-
PYY
polypeptide YY
-
PVN
nucleus paraventricularis magnocellularis
-
PVO
organum paraventriculare
-
R
nucleus raphes
-
ROT
nucleus rotundus
-
RP
nucleus reticularis pontis caudalis
-
Rpc
nucleus reticularis parvocellularis
-
RPgc
nucleus reticularis pontis caudalis, pars gigantocellularis
-
RPO
nucleus reticularis pontis oralis
-
SCd
nucleus subcoeruleus dorsalis
-
SCv
nucleus subcoeruleus ventralis
-
SCNm
nucleus suprachiasmaticus, pars medialis
-
SCNl
nucleus suprachiasmaticus, pars lateralis
-
SL
nucleus septalis lateralis
-
SM
nucleus septalis medialis
-
Ta
nucleus tangentialis
-
TeO
tectum opticum
-
Tn
nucleus taeniae
-
TPc
nucleus tegmenti pedunculo-pontinus, pars compacta
-
TSM
tractus septo-mesencephalicus
-
TV
nueleus tegmenti ventralis
-
VeL
nucleus vestibularis lateralis
-
VLT
nucleus ventrolateralis thalami
-
VMN
nucleus ventromedialis hypothalami
A preliminary report of this study was presented at the 15th Conference of European Comparative Endocrinologists, Leuven, Belgium, September 1990 相似文献
43.
用PRV和NPY免疫荧光双标记法研究了大鼠孤束核中NPY样神经元对咽肌运动神经元的调控。PRV注射大鼠咽肌后,在孤束核的中介亚核和中间亚核中可见许多PRV和NPY双标记细胞。首次证明了大鼠孤束核中的NPY样神经元和咽肌运动神经元的联系。推测NPY可能对咽肌运动的精确调控有关。 相似文献
44.
Max Keller Melanie Kaske Tobias Holzammer Günther Bernhardt Armin Buschauer 《Bioorganic & medicinal chemistry》2013,21(21):6303-6322
The structurally related peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) are endogenous agonists of the NPY receptor (YR) family, which in humans comprises four functionally expressed subtypes, designated Y1R, Y2R, Y4R and Y5R. Nonpeptide antagonists with high affinity and selectivity have been described for the Y1R, Y2R and Y5R, but such compounds are still lacking for the Y4R. In this work, the structures of the high affinity selective (R)-argininamide-type Y1R antagonists BIBP3226 and BIBO3304 were linked via the guanidine or urea moieties to give homo-dimeric argininamides with linker lengths ranging from 31 to 41 atoms. Interestingly, the twin compounds proved to be by far less selective for the Y1R than the R-configured monovalent parent compounds. The decrease in selectivity ratio was most pronounced for Y1R versus Y4R subtype, resulting in comparable affinities of bivalent ligands for Y1R and Y4R (e.g. UR-MK177 ((R,R)-49): Ki = 230 nM (Y1R) and 290 nM (Y4R)). With a Ki value of 130 nM and a Kb value of 20 nM, UR-MK188 ((R,R)-51) was superior to all Y4R antagonists known to date. The S,S-configured optical antipodes of UR-MK177 and UR-MK188 (UR-MEK381 ((S,S)-49) and UR-MEK388 ((S,S)-51)) were synthesized to investigate the stereochemical discrimination by the different receptor subtypes. Whereas preference for R,R-configured argininamides was characteristic of the Y1R, stereochemical discrimination by the Y4R was not observed. This may pave the way to selective Y4R antagonists. 相似文献
45.
46.
Bioactive (neuro)peptides play critical roles in regulating most biological processes in animals. Peptides belonging to the same family are characterized by a typical sequence pattern that is conserved among the family's peptide members. Such a conserved pattern or motif usually corresponds to the functionally important part of the biologically active peptide. In this paper, all known bioactive (neuro)peptides annotated in Swiss-Prot and TrEMBL protein databases are collected, and the pattern searching program Pratt is used to search these unaligned peptide sequences for conserved patterns. The obtained patterns are then refined by combining the information on amino acids at important functional sites collected from the literature. All the identified patterns are further tested by scanning them against Swiss-Prot and TrEMBL protein databases. The diagnostic power of each pattern is validated by the fact that any annotated protein from Swiss-Prot and TrEMBL that contains one of the established patterns, is indeed a known (neuro)peptide precursor. We discovered 155 novel peptide patterns in addition to the 56 established ones in the PROSITE database. All the patterns cover 110 peptide families. Fifty-five of these families are not characterized by the PROSITE signatures, and 12 are also not identified by other existing motif databases, such as Pfam and SMART. Using the newly identified peptide signatures as a search tool, we predicted 95 hypothetical proteins as putative peptide precursors. 相似文献
47.
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca2+ and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca2+ chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause. 相似文献
48.
N. Messal N. Fernandez S. Dayot V. Gratio P. Nicole C. Prochasson I. Chantret G. LeGuilloux A. Jarry A. Couvelard X. Tréton T. Voisin E. Ogier-Denis A. Couvineau 《生物化学与生物物理学报:疾病的分子基础》2018,1864(11):3618-3628
Orexins (orexin-A and orexin-B) are hypothalamic peptides that are produced by the same precursor and are involved in sleep/wake control, which is mediated by two G protein-coupled receptor subtypes, OX1R and OX2R. Ulcerative colitis (UC) is an inflammatory bowel disease, (IBD) which is characterized by long-lasting inflammation and ulcers that affect the colon and rectum mucosa and is known to be a significant risk factor for colon cancer development. Based on our recent studies showing that OX1R is aberrantly expressed in colon cancer, we wondered whether orexin-A could play a role in UC. Immunohistochemistry studies revealed that OX1R is highly expressed in the affected colonic epithelium of most UC patients, but not in the non-affected colonic mucosa. Injection of exogenous orexin-A specifically improved the inflammatory symptoms in the two colitis murine models. Conversely, injection of inactive orexin-A analog, OxB7–28 or OX1R specific antagonist SB-408124 did not have anti-inflammatory effect. Moreover, treatment with orexin-A in DSS-colitis induced OX1R?/? knockout mice did not have any protective effect. The orexin-A anti-inflammatory effect was due to the decreased expression of pro-inflammatory cytokines in immune cells and specifically in T-cells isolated from colonic mucosa. Moreover, orexin-A inhibited canonical NFκB activation in an immune cell line and in intestinal epithelial cell line. These results suggest that orexin-A might represent a promising alternative to current UC therapies. 相似文献
49.
The highest concentration of neurokinin A-like immunoreactivity and substance P-like immunoreactivity in the guinea pig small intestine was associated with the myenteric plexus-containing longitudinal muscle layer. Chromatographic analysis of extracts of this tissue demonstrated the presence of neurokinin A and neuropeptide K but the probable absence of neurokinin B. A fraction of synaptic vesicles of density 1.133 +/- 0.003 g/ml was prepared from the myenteric plexus-containing tissue by density gradient centrifugation in a zonal rotor and was enriched 29 +/- 12-fold in the concentration of neurokinin A-like immunoreactivity and 43 +/- 13-fold in the concentration of substance P-like immunoreactivity. This fraction was separated from the fraction of vasoactive intestinal peptide-containing vesicles (density, 1.154 +/- 0.009 g/ml). Chromatographic analysis of lysates of the vesicles indicated the presence of neurokinin A but not neuropeptide K. It is postulated that beta-pre-protachykinin is processed to substance P, neurokinin A, and neuropeptide K in the cell bodies of myenteric plexus neurons but that conversion of neuropeptide K to neurokinin A takes place during packaging into storage vesicles for axonal transport. The data are consistent with the proposal that neurokinin A and substance P are stored in the same synaptic vesicle, but the possibility of cosedimentation of different vesicles of very similar density cannot be excluded. 相似文献
50.
Two monobiotinylated analogs of neuropeptide Y (NPY) were synthesized by coupling the N-hydroxysuccinimidyl esters of biotin and (6-biotinylamido)-hexanoic acid, respectively, to the free alpha-NH2 group of the side chain protected NPY peptide resin. Crude peptides obtained by HF cleavage were purified by RPLC and their integrities were confirmed by amino acid and mass spectral analysis. As with NPY, both biotinylated analogs inhibited 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes in a dose-dependent manner. N-alpha-[(6-biotinylamido)-hexanoyl]-NPY exhibited potencies comparable to that of NPY whereas N-alpha-biotinyl-NPY was slightly less potent. In the in vivo experiments, however, both the biotinylated analogs exhibited responses comparable to NPY in increasing arterial blood pressure and decreasing heart rate in anesthetized rats. The responses of the biotinyl analogs were longer lasting than those of NPY. Histochemical studies revealed that N-alpha-[(6-biotinylamido)-hexanoyl]-NPY could label the NPY receptors in rat cardiac ventricular tissues. This labeling was specific since intact NPY inhibited the staining. These studies show that biotinyl-NPY analogs exhibit biological potencies comparable to intact NPY and can therefore be used to further probe the NPY-receptor interaction. 相似文献