首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
  77篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   8篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2002年   1篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1984年   1篇
排序方式: 共有77条查询结果,搜索用时 0 毫秒
51.
The effects of the extended FLRFamide-like peptides, TNRNFLRFamide and SDRNFLRFamide, were studied on the stomach musculature of the crab Cancer borealis. Peptide-induced modulation of nerve-evoked contractions was used to screen muscles. All but 2 of the 17 muscles tested were modulated by the peptides. In several muscles of the pyloric region, peptides induced long-lasting myogenic activity. In other muscles, the peptides increased the amplitude of nerve-evoked contractions, excitatory junctional potentials, and excitatory junctional currents, but produced no apparent change in the input resistance of the muscle fibers. The threshold concentration was 10–10 M for TNRNFLRFamide and between 10–9 M to 10–8 M for SDRNFLRFamide. The absence of direct peptidecontaining innervation to these muscles and the wide-spread sensitivity of these muscles to the peptides suggest that TNRNFLRFamide and SDRNFLRFamide may be released from neurosecretory structures to modulate stomatogastric musculature hormonally. We speculate that hormonally released peptide will be crucial for maintaining appreciable muscle contraction in response to low-frequency and low-intensity motor discharge.Abbreviations cpv muscles cardiopyloric valve muscles - CG commissural ganglion - DG neuron dorsal gastric neuron - dgn dorsal gastric nerve - dvn dorsal ventricular nerve - EJC excitatory junctional current - EJP excitatory junctional potential - FaRPs FMRF-amide related peptides - gm muscles gastric mill muscles - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles pyloric muscles - STG stomatogastric ganglion  相似文献   
52.
53.
In rats pretreated with deprenyl (2 mg/kg), electrical stimulation of the left substantia nigra produced an increase in the concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the left striatum by 57 and 45%, but the levels of 2-phenylethylamine and p-tyramine decreased by 22 and 41%, respectively, as compared with those in the right striatum. The administration of alpha-methyl-p-tyrosine (1.25 mg/kg, i.p.), a tyrosine hydroxylase inhibitor, 1 h before nigral stimulation, did not affect the concentration of 2-phenylethylamine in unstimulated striata but prevented the stimulation-induced decrease in the concentration of 2-phenylethylamine. Neither stimulation nor alpha-methyl-p-tyrosine affected the activity of monoamine oxidase A or B, and stimulation did not produce any change in striatal blood flow, a finding demonstrating that the changes in the rate of accumulation of 2-phenylethylamine were not due to changes in catabolism or removal of 2-phenylethylamine from the brain. These experiments demonstrate that the rate of synthesis of striatal 2-phenylethylamine is decreased following nigral stimulation and that this effect is blocked after partial inhibition of tyrosine hydroxylase. This suggests that 2-phenylethylamine is present in tyrosine hydroxylase-containing neurons and therefore supports the coexistence of 2-phenylethylamine and dopamine in the nigrostriatal pathway.  相似文献   
54.
Summary.  Despite the multitude of evidence for the beneficial effects of taurine supplementation in a variety of disease, the underlying modifying action of taurine with respect to either molecular or biochemical mechanisms is almost totally unknown. We have assessed the development of taurine analogues, particularly where there has been substitution at the suphonate or amine group. Such substitutions allow the investigator to probe the relationship between structure and function of the taurine molecule. In addition such studies should help to ascertain taurine's point of interaction with the effector molecule. These results will prepare the way for the development of the second generation of taurine analogues. Received January 2, 2002 Accepted January 28, 2002 Published online August 30, 2002 Acknowledgements This research has been funded by the COST Chemistry programmes COST D8 “Chemistry of Metals in Medicine” and D-13 “New Molecules for Human Health Care”. All of the authors are members of the Working Group D13/0011/00 “Investigation of mechanisms underlying the pharmacological actions of taurine upon cell apoptosis and calcium homeostasis”. Authors' address: Dr. R.J. Ward, Unite de Biochimie, Catholic Universite de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium, E-mail: ward@bioc.ucl.ac.be  相似文献   
55.
Dopamine modulates voltage- and ligand-gated currents in striatal medium-sized neurons (MSNs) through the activation of D1- and D2-like family receptors. GABAA receptor-mediated currents are reduced by D1 receptor agonists, but the relative contribution of D1 or D5 receptors in this attenuation has been elusive due to the lack of selective pharmacological agents. Here we examined GABAA receptor-mediated currents and the effects of D1 agonists on MSNs from wildtype and D1 or D5 receptor knockout (KO) mice. Immunohistochemical and single-cell RT-PCR studies demonstrated a lack of compensatory effects after genetic deletion of D1 or D5 receptors. However, the expression of GABAA receptor α1 subunits was reduced in D5 KO mice. At the functional level, whole-cell patch clamp recordings in dissociated MSNs showed that GABA peak current amplitudes were smaller in cells from D5 KO mice indicating that lack of this receptor subtype directly affected GABAA-mediated currents. In striatal slices, addition of a D1 agonist reduced GABA currents significantly more in D5 KO compared to D1 KO mice. We conclude that D1 receptors are the main D1-like receptor subtype involved in the modulation of GABA currents and that D5 receptors contribute to the normal expression of these currents in the striatum. Special issue dedicated to Anthony Campagnoni.  相似文献   
56.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   
57.
58.
Substance P, a peptide endogenous to the splanchnic nerve, is known to inhibit the acetylcholine-and nicotine-induced release of catecholamines from isolated adrenal chromaffin cells. In the present study the effect of substance P on desensitization of catecholamine release from these cells was examined. Substance P (10(-5) M) completely protected against desensitization of catecholamine release produced by acetylcholine at 37 degrees C or 23 degrees C and by nicotine at 23 degrees C; substance P also afforded appreciable protection against nicotine-induced desensitization at 37 degrees C. The peptide had no effect on K+-induced desensitization of catecholamine release. Like substance P, d-tubocurarine also prevented nicotinic desensitization. Substance P prevented both of two components of nicotinic desensitization, i.e. the Ca2+-dependent component and the Ca2+-independent, depletion-independent component of desensitization. Substance P had little effect on subsequent catecholamine uptake, indicating that substance P's protection against desensitization is a result of facilitation of catecholamine release rather than inhibition of catecholamine reuptake. Nicotine-induced catecholamine release and nicotinic desensitization of catecholamine release were Na+-independent, although substance P's inhibition of nicotine-induced catecholamine release was reduced by extracellular Na+. These in vitro studies suggest a similar role for substance P in vivo: substance P's protection against nicotinic desensitization may ensure a maintained output of adrenal catecholamines during stress, when the splanchnic nerve releases large amounts of acetylcholine.  相似文献   
59.
NMDA receptors (NMDARs) are glutamate-gated ion channels involved in excitatory synaptic transmission and in others physiological processes such as synaptic plasticity and development. The overload of Ca2+ ions through NMDARs, caused by an excessive activation of receptors, leads to excitotoxic neuronal cell death. For this reason, the reduction of Ca2+ flux through NMDARs has been a central focus in finding therapeutic strategies to prevent neuronal cell damage.Extracellular H+ are allosteric modulators of NMDARs. Starting from previous studies showing that extracellular mild acidosis reduces NMDA-evoked whole cell currents, we analyzed the effects of this condition on the NMDARs Ca2+ permeability, measured as “fractional calcium current” (Pf, i.e. the percentage of the total current carried by Ca2+ ions), of human NMDARs NR1/NR2A and NR1/NR2B transiently transfected in HeLa cells. Extracellular mild acidosis significantly reduces Pf of both human NR1/NR2A and NR1/NR2B NMDARs, also decreasing single channel conductance in outside out patches for NR1/NR2A receptor. Reduction of Ca2+ flux through NMDARs was also confirmed in cortical neurons in culture. A comparative analysis of both NMDA evoked Ca2+ transients and whole cell currents showed that extracellular H+ differentially modulate the permeation of Na+ and Ca2+ through NMDARs.Our data highlight the synergy of two distinct neuroprotective mechanisms during acidosis: Ca2+ entry through NMDARs is lowered due to the modulation of both open probability and Ca2+ permeability. Furthermore, this study provides the proof of concept that it is possible to reduce Ca2+ overload in neurons modulating the NMDAR Ca2+ permeability.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号