首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   41篇
  国内免费   22篇
  2023年   10篇
  2022年   25篇
  2021年   28篇
  2020年   17篇
  2019年   24篇
  2018年   21篇
  2017年   14篇
  2016年   17篇
  2015年   12篇
  2014年   32篇
  2013年   43篇
  2012年   19篇
  2011年   22篇
  2010年   14篇
  2009年   16篇
  2008年   32篇
  2007年   17篇
  2006年   27篇
  2005年   16篇
  2004年   18篇
  2003年   23篇
  2002年   15篇
  2001年   15篇
  2000年   13篇
  1999年   16篇
  1998年   15篇
  1997年   9篇
  1996年   9篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   7篇
  1991年   13篇
  1990年   6篇
  1988年   9篇
  1987年   8篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有670条查询结果,搜索用时 218 毫秒
111.
The relationship between the structure of new semisynthetic derivatives of doxorubicin, daunorubicin, and carminomycin and their ability to inhibit topoisomerase I were studied. The new derivatives inhibit the activity of topoisomerase I at low concentrations, induce the death of K-562 leukemia cells in culture, and produce an antitumor effect in experimental animals bearing P388 leukemia.  相似文献   
112.
This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential.  相似文献   
113.
Antisense oligomers are potential pharmaceutical and radiopharmaceutical agents that can be used to modulate and image gene expression. Progress with in vivogene targeting using antisense-based therapeutics has been slower than expected during the last decade, owing to poor trans-cellular delivery of antisense agents. This chapter suggests that if antisense pharmacology is merged with drug targeting technology, then membrane barriers can be circumvented and antisense agents can be delivered to tissues in vivo. Without the application of drug targeting, the likelihood of success for an antisense drug development program is low, particularly for the brain which is protected by the blood-brain barrier (BBB). Among the different classes of antisense agents, peptide nucleic acids (PNA) present advantages for in vivoapplications over conventional and modified oligodeoxynucleotides (ODN), including phosphorothioates (PS)-ODN. Some advantages of PNAs include their electrically neutral backbone, low toxicity to neural cells, resistance to nucleases and peptidases, and lack of binding to plasma proteins. PNAs are poorly transported through cellular membranes, however, including the BBB and the brain cell membrane (BCM). Because the mRNA target for the antisense agent lies within the cytosol of the target cell, the BBB and the BCM must be circumvented in vivo, which ispossible with the use of chimeric peptide drug targeting technology. Chimeric peptides are formed by conjugation of a non-transportable drug, such as a PNA, to a drug delivery vector. The vector undergoes receptor-mediated transcytosis (RMT) through the BBB and receptor-mediated endocytosis through the BCM in vivo. When labeled with a radioisotope (e.g., 125I or 111In), the antisense chimeric peptide provides imaging of gene expressionin the brain in vivoin a sequence-specific manner. Further development of antisense radiopharmaceutical agents may allow for in vivoimaging of genes in pathological states, and may provide tools for the analysis of novel genes with functional genomics.  相似文献   
114.
Summary Genomic sequencing makes it possible to identify all the genes of an organism, now includingHomo sapiens. Yet measurement of the expression of each gene of interest still presents a daunting prospect. Northern blots, RNase protection assays, as well as microarrays and related technologies permit measurement of gene expression in total RNA extracted from cultured cells or tissue samples. It would be most valuable, however, to quantitate gene expression noninvasively in living cells and tissues. Unfortunately, no reliable method has been available to measure levels of specific mRNAsin vivo. Peptide nucleic acids (PNAs) display superior ruggedness and hybridization properties as a diagnostic tool for gene expression, and could be used for this purpose. On the down side, they are negligibly internalized by normal or malignant cells in the absence of conjugated ligands. Nevertheless, we have observed that Tc-99m-peptides can delineate tumors, and PNA-peptides designed to bind to IGF-1 receptors on malignant cells are taken up specifically and concentrated in nuclei. We have postulated that antisense Tc-99m-PNA-peptides will be taken up by human cancer cells, will hybridize to complementary mRNA targets, and will permit scintigraphic imaging of oncogene mRNAs in human cancer xenografts in a mouse model. The oncogenes cyclin D1,ERBB2, c-MYC, K-RAS, and tumor suppressor p53 are being probed initially. These experiments provide a proof-of-principle for noninvasive detection of oncogene expression in living cells and tissues. This scintigraphic imaging technique should be applicable to any particular gene of interest in a cell or tissue type with characteristic receptors.  相似文献   
115.
Increased protein synthesis is regulated, in part, by two eukaryotic translation initiation factors (eIFs): eIF4E and eIF2α. One or both of these factors are often overexpressed in several types of cancer cells; however, no data are available at present regarding eIF4E and eIF2α levels in brain tumors. In this study, we analyzed the expression, subcellular localization and phosphorylation states of eIF4E and eIF2α in 64 brain tumors (26 meningiomas, 16 oligodendroglial tumors, and 22 astrocytomas) and investigated the correlation with the expression of MIB-1, p53, and cyclin D1 proteins as well. There are significant differences in the phosphorylated eIF4E levels between the tumors studied, being the highest in meningiomas and the lowest in the oligodendroglial tumors. Relative to subcellular localization, eIF4E is frequently found in the nucleus of the oligodendroglial tumors and rarely in the same compartment of the meningiomas, whereas eIF2α showed an inverse pattern. Finally, cyclin D1 levels directly correlate with the phosphorylation status of both factors. The different expression, phosphorylation, or/and subcellular distribution of eIF2α and eIF4E within the brain types of tumors studied could indicate that different pathways are activated for promoting cell cycle proliferation, for instance, leading to increased cyclin D1 expression. (J Histochem Cytochem 57:503–512, 2009)  相似文献   
116.
Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.  相似文献   
117.
The process of angiogenesis has been found to be essential for the development of estrogen-induced pituitary prolactinoma in Fischer 344 rats. Thalidomide [(alpha-(N-phthalimido)-glutarimide] is known to be a potent immunomodulatory drug with antiangiogenic properties, but its effect on lactotroph cell secretory function and pituitary prolactinoma formation has not been described yet. The purpose of this study was to examine the effects of thalidomide on secretion of prolactin (PRL) and vascular endothelial growth factor (VEGF), cell proliferation, apoptosis and angiogenesis within the anterior pituitary gland in long-term diethylstilboestrol (DES)-treated male F344 rats in vivo and in vitro. It was found that DES sharply increased serum PRL and VEGF levels. On the other hand, simultaneous treatment of F344 rats with thalidomide for the last 15 days of the experiment attenuated the stimulatory effect of DES on PRL and VEGF secretion. It also diminished prolactin cell proliferation evaluated as the number of proliferating cell nuclear antigen (PCNA)-positive stained cell nuclei and increased the number of apoptotic bodies determined by the terminal deoxynucleotidyl-mediated dUTP nick-end labeling (TUNEL) method in sections of the DES-induced pituitary prolactinoma. The density of pituitary microvessels evaluated by microscopic counting of CD-31-positive blood vessels was also diminished by the tested drug. In addition, thalidomide (10(-4) to 10(-6) M) inhibited cell proliferation, prolactin and VEGF secretion from rat pituitary prolactinoma cells cultured in vitro. In conclusion, our results provide strong evidence for the antiprolactin and antitumor activity of thalidomide in experimentally DES-induced pituitary adenoma.  相似文献   
118.
Transplantation models using human brain tumor cells have served an essential function in neuro-oncology research for many years. In the past, the most commonly used procedure for human tumor xenograft establishment consisted of the collection of cells from culture flasks, followed by the subcutaneous injection of the collected cells in immunocompromised mice. Whereas this approach still sees frequent use in many laboratories, there has been a significant shift in emphasis over the past decade towards orthotopic xenograft establishment, which, in the instance of brain tumors, requires tumor cell injection into appropriate neuroanatomical structures. Because intracranial xenograft establishment eliminates the ability to monitor tumor growth through direct measurement, such as by use of calipers, the shift in emphasis towards orthotopic brain tumor xenograft models has necessitated the utilization of non-invasive imaging for assessing tumor burden in host animals. Of the currently available imaging methods, bioluminescence monitoring is generally considered to offer the best combination of sensitivity, expediency, and cost. Here, we will demonstrate procedures for orthotopic brain tumor establishment, and for monitoring tumor growth and response to treatment when testing experimental therapies.  相似文献   
119.
Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells.  相似文献   
120.
介孔二氧化硅纳米粒子(mesoporous silica nanoparticles,MSNs)作为新型纳米载体在生物医药领域具有较好的应用前景,其有别于传统无机材料的物理化学性质对于当今恶性肿瘤的诊断与治疗起着关键性作用。尤其是MSNs作为一种具有高装载量、良好的生物相容性、靶向性以及对药物释放的可控性的载药平台,可用于解决目前临床上恶性肿瘤诊疗中遇到的问题。主要探讨了MSNs探针及MSNs靶向给药系统的应用进展及发展方向,以期为恶性肿瘤诊疗提供思路与参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号