首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   65篇
  国内免费   10篇
  2023年   14篇
  2022年   11篇
  2021年   18篇
  2020年   13篇
  2019年   12篇
  2018年   14篇
  2017年   13篇
  2016年   18篇
  2015年   21篇
  2014年   29篇
  2013年   31篇
  2012年   27篇
  2011年   15篇
  2010年   16篇
  2009年   20篇
  2008年   22篇
  2007年   30篇
  2006年   21篇
  2005年   16篇
  2004年   15篇
  2003年   9篇
  2002年   13篇
  2001年   11篇
  2000年   24篇
  1999年   22篇
  1998年   27篇
  1997年   21篇
  1996年   24篇
  1995年   37篇
  1994年   26篇
  1993年   16篇
  1992年   29篇
  1991年   29篇
  1990年   23篇
  1989年   17篇
  1988年   19篇
  1987年   38篇
  1986年   16篇
  1985年   15篇
  1984年   18篇
  1983年   11篇
  1982年   26篇
  1981年   17篇
  1980年   14篇
  1978年   11篇
  1977年   6篇
  1976年   9篇
  1972年   7篇
  1971年   10篇
  1970年   9篇
排序方式: 共有950条查询结果,搜索用时 609 毫秒
41.
Nerve Growth Factor as a Mitogen for a Pancreatic Carcinoid Cell Line   总被引:1,自引:0,他引:1  
Abstract: Carcinoid tumors are a group of neuroendocrine neoplasms distributed widely throughout the body but most commonly occurring in the gut. These tumors retain many characteristics of their neural crest origin, including secretion of neuroactive peptides and responsiveness to neurotrophic substances. Nerve growth factor (NGF), a neurotrophic protein involved in maintenance and differentiation of peripheral sympathetic and sensory neurons, regulates growth of several neural tumor cells by inducing a differentiated phenotype and subsequent inhibition of cell growth rate. We examined the actions of NGF in a functioning human pancreatic carcinoid cell line (termed BON). NGF has no effect on the cytoarchitecture or constitutive secretion of bioamines in this carcinoid cell line. NGF, however, stimulates the in vitro cellular proliferation of BON cells. BON cells possess mRNA for the NGF receptors (p75LNGFR and p140trkA) and membrane-associated tyrosine kinase activity is increased in response to NGF. Both the mitogenic activity of NGF, as well as the receptor-linked tyrosine kinase activity, can be abrogated in BON cells by the trkA inhibitor K-252a and specific anti-NGF antibody. Our studies demonstrate that NGF is a mitogen for this carcinoid cell line without effect on cellular phenotype or cytoarchitecture. NGF may play a role in the development and progression of human carcinoid tumors.  相似文献   
42.
Abstract: Nerve growth factor (NGF) induces the synthesis and the phosphorylation of the orphan nuclear receptor NGFI-B in PC12 cells. Previous work has shown that phosphorylation, by protein kinase A, of a specific serine in the DNA-binding domain inhibits its binding to the NGFI-B response element. Also, cytoplasmic extracts from PC12 cells phosphorylate this serine, and phosphorylation is greater in extracts from cells treated with NGF. The present work describes the induction, identification, and partial purification of a kinase (termed NGFI-B kinase I) from PC12 cell extracts that catalyzes this phosphorylation. Phosphorylation of the DNA-binding domain with this purified preparation inhibits its binding to the NGFI-B response element. The kinase is rapidly activated by treatment of the cells with NGF, and the activation lasts for at least several hours. It also is activated by fibroblast growth factor and epidermal growth factor (EGF), but the activation by EGF is quite transient. The kinase requires Mg2+ but will use Mn2+. The molecular mass of the kinase is 95–100 kDa, and it is different from protein kinase A, Fos kinase, or pp90 rsk . Comparison with a partially purified preparation of cyclic AMP response element-binding protein kinase, however, indicates that the two are either very similar or identical.  相似文献   
43.
Abstract: SR 57746A {1-[2-(naphth-2-yl)ethyl]-4-(3-trifluoromethylphenyl)-1,2,5,6-tetrahydropyridine hydrochloride} exhibits neurotrophic activities in vivo and in vitro. We used the rat pheochromocytoma PC12 cell line to investigate in vitro cellular changes induced by SR 57746A. A significant increase in the percentage of cells bearing neurite-like processes was obtained in cells treated by SR 57746A and nerve growth factor (NGF) compared with NGF treatment alone. SR 57746A added alone, however, had no effect on morphogenesis or on survival of cells in serum-free medium. In contrast, SR 57746A induced a "priming" effect on PC12 cells for neurite outgrowth within 6 h of addition of the protein tyrosine kinase inhibitor genistein. An increase in α-actinin content resulted from treatment with SR 57746A. Expression of NGF-mediated acetylcholinesterase and choline acetyltransferase was enhanced within 5 days by SR 57746A. The molecule also induced rapid F-actin redistribution. Within 2 min of incubation, outgrowth of F-actin-containing filopodia was clearly visible at the cell periphery, as previously shown with NGF. It is interesting that this effect of SR 57746A could be mimicked by protein tyrosine kinase inhibitors and abolished by preincubation with sodium orthovanadate, a protein tyrosine phosphatase inhibitor.  相似文献   
44.
Abstract: The excitatory neurotransmitter glutamate is believed to play important roles in development, synaptic plasticity, and neurodegenerative conditions. Recent studies have shown that neurotrophic factors can modulate neuronal excitability and survival and neurite outgrowth responses to glutamate, but the mechanisms are unknown. The present study tested the hypothesis that neurotrophic factors modulate responses to glutamate by affecting the expression of specific glutamate-receptor proteins. Exposure of cultured embryonic rat hippocampal cells to basic fibroblast growth factor (bFGF) resulted in a concentration-dependent increase in levels of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor subunit GluR1 protein as determined by western blot, dot-blot, and immunocytochemical analyses. In contrast, bFGF did not alter levels of GluP2/3, GluR4, or the NMDA-receptor subunit NR1. Nerve growth factor did not affect GluR1 levels. Calcium-imaging studies revealed that elevation of [Ca2+]i, resulting from selective AMPA-receptor activation, was enhanced in bFGF-pretreated neurons. On the other hand, [Ca2+]i responses to NMDA-receptor activation were suppressed in bFGF-treated neurons, consistent with previous studies showing that bFGF can protect neurons against NMDA toxicity. Moreover, neurons pretreated with bFGF were relatively resistant to the toxicities of glutamate and AMPA, both of which were shown to be mediated by NMDA receptors. These data suggest that differential regulation of the expression of specific glutamate-receptor subunits may be an important mechanism whereby neurotrophic factors modulate activity-dependent neuronal plasticity and vulnerability to excitotoxicity.  相似文献   
45.
Abstract: Monoclonal antibodies were produced that are specific for the three major pertussis toxin-sensitive G protein α-subunits present in mammalian brain—αo, αi1, and αi2—using purified bovine brain G proteins, purified rat brain G proteins, and purified recombinant αi2, respectively. These monoclonal antibodies were used to monitor changes in the concentrations of the three G protein α-subunits during differentiation of PC12 cells and human neuroblastoma LA-N-5 cells. In PC12 cells, levels of αi1 but not αi2 increased during nerve growth factor-induced differentiation. In contrast, αi2 but not αi1 increased when LA-N-5 cells were differentiated with retinoic acid. The concentration of αo increased in both cell lines during differentiation. Electrophoretic resolution of αo subtypes revealed that although αo2 was the major subtype in undifferentiated cells, only the concentration of αo1 increased during differentiation of both PC12 and LA-N-5 cells. The level of 43-kDa growth-associated protein, a protein known to associate with αo, increased similarly to that of αo1. ADP-ribosylation of αo, αi1, and αi2 with pertussis toxin did not alter the reactivities of the monoclonal antibodies, but toxin treatment of cells reduced the concentrations of each protein after 24 h. There was no change in the concentration of αq, which is not ADP-ribosylated by pertussis toxin. Thus, these new monoclonal antibodies enabled the detection of differential increases in subtypes of αi and αo associated with neuronal differentiation.  相似文献   
46.
Abstract: We examined the ability of ceramide and sphingomyelinase (SMase) to prevent neuronal programmed cell death (PCD). We found that a cell-permeable ceramide analogue prevented neuronal PCD when applied to established sympathetic neuron primary cultures at the time of nerve growth factor (NGF) deprivation. Other amphiphilic lipids such as oleic acid failed to prevent cell death. Exogenous SMase also showed the same effect, probably by raising the intracellular ceramide level by sphingomyelin (SM) breakdown. Phosphocholine, another hydrolytic product of SM by SMase, did not prevent cell death. Other phospholipases, such as phospholipase C and phospholipase A2, could not prevent cell death. Given the recent findings that the SM cycle is activated to increase the intracellular ceramide level on NGF binding to the low-affinity NGF receptor (LNGFR) and that NGF binding to LNGFR suppresses apoptosis in neural cell lines, our results suggest the possibility of the SM cycle as a signaling mechanism transducing the PCD-preventing activity of NGF.  相似文献   
47.
Abstract: Peroxynitrite is a powerful oxidant formed by the near-diffusion-limited reaction of nitric oxide with superoxide. Large doses of peroxynitrite (>2 m M ) resulted in rapid cell swelling and necrosis of undifferentiated PC12 cells. However, brief exposure to lower concentrations of peroxynitrite (EC50 = 850 µ M ) initially (3–4 h) caused minimal damage to low-density cultures. By 8 h, cytoplasmic shrinkage with nuclear condensation and fragmentation became increasingly evident. After 24 h, 36% of peroxynitrite-treated cells demonstrated these features associated with apoptosis. In addition, 46% of peroxynitrite-treated cells demonstrated DNA fragmentation (by terminal-deoxynucleotide transferase-mediated dUTP-digoxigenin nick end-labeling) after 7 h, which was inhibited by posttreatment with the endonuclease inhibitor aurintricarboxylic acid. Serum starvation also resulted in apoptosis in control cells (23%), the percentage of which was not altered significantly by peroxynitrite treatment. Although peroxynitrite is known to be toxic to cells, the present study provides a first indication that peroxynitrite induces apoptosis. Furthermore, pretreatment of cells with nerve growth factor or insulin, but not epidermal growth factor, was protective against peroxynitrite-induced apoptosis. However, both acidic and basic fibroblast growth factors greatly increased peroxynitrite-initiated apoptosis, to 63 and 70%, respectively. Thus, specific trophic factors demonstrate differential regulation of peroxynitrite-induced apoptosis in vitro.  相似文献   
48.
We have investigated the phylogenetic relationships of monotremes and marsupials using nucleotide sequence data from the neurotrophins; nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). The study included species representing monotremes, Australasian marsupials and placentals, as well as species representing birds, reptiles, and fish. PCR was used to amplify fragments encoding parts of the neurotrophin genes from echidna, platypus, and eight marsupials from four different orders. Phylogenetic trees were generated using parsimony analysis, and support for the different tree structures was evaluated by bootstrapping. The analysis was performed with NGF, BDNF, or NT-3 sequence data used individually as well as with the three neurotrophins in a combined matrix, thereby simultaneously considering phylogenetic information from three separate genes. The results showed that the monotreme neurotrophin sequences associate to either therian or bird neurotrophin sequences and suggests that the monotremes are not necessarily related closer to therians than to birds. Furthermore, the results confirmed the present classification of four Australasian marsupial orders based on morphological characters, and suggested a phylogenetic relationship where Dasyuromorphia is related closest to Peramelemorphia followed by Notoryctemorphia and Diprotodontia. These studies show that sequence data from neurotrophins are well suited for phylogenetic analysis of mammals and that neurotrophins can resolve basal relationships in the evolutionary tree. Received: 27 January 1997 / Accepted: 20 March 1997  相似文献   
49.
Abstract: In astrocytes, nerve growth factor (NGF) synthesis has been described to be stimulated by the cytokines interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) and inhibited by corticosterone. As all three factors are present in the brain under certain conditions, we investigated the effect of their combined application on NGF secretion in the astroglial cell line RC7 and, in addition, studied the effect of calcitriol (1α,25-dihydroxyvitamin D3). Calcitriol stimulated NGF secretion, whereas corticosterone reduced basal levels of NGF secretion as well as inhibited the NGF secretion induced by IL-1β, calcitriol, and TGF-β1. Calcitriol had an additive effect when applied together with IL-1β and a synergistic effect when applied with TGF-β1. Moreover, calcitriol not only counteracted the inhibitory effect of corticosterone on NGF secretion stimulated by TGF-β1 but even augmented it to a level more than threefold higher than that reached with TGF-β1 alone. Due to the trophic effect of NGF on basal forebrain cholinergic neurons, these findings might be of therapeutic relevance under conditions where cholinergic function is impaired and the endogenous levels of corticosterone, IL-1β, or TGF-β1 are elevated.  相似文献   
50.
Abstract: It is well documented that nerve growth factor (NGF) plays an important role in maintaining functions of cholinergic basal forebrain neurons. In the present study, we tested the hypothesis that cholinergic activity controls NGF levels in cholinoceptive neurons of the cerebral cortex and hippocampus. To address that question, we used both cholinergic deafferentation of cerebral cortex and hippocampus by cholinergic immunolesion with 192IgG-saporin and chronic pharmacological treatment of sham-treated and immunolesioned rats with the cholinergic agonist pilocarpine and the cholinergic antagonist scopolamine. We observed an increase in NGF protein levels in the cortex and hippocampus after cholinergic immunolesions and also after muscarinic receptor blockade by chronic intracerebroventricular scopolamine infusion in sham-treated rats after 2 weeks. There was no further increase in the accumulation of NGF after scopolamine treatment of immunolesioned rats. Chronic infusion of pilocarpine had no effect on cortical and hippocampal NGF protein levels in sham-treated rats. In rats with cholinergic immunolesions, however, pilocarpine did prevent the lesion-induced accumulation of NGF. There was no effect of cholinergic lesion and drug treatment on cortical or hippocampal NGF mRNA levels, consistent with the importance of NGF retrograde transport as opposed to its de novo synthesis. This study provides strong evidence for the hypothesis that there is cholinergic control of cortical and hippocampal NGF protein but not mRNA levels in adult rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号