首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3380篇
  免费   570篇
  国内免费   1325篇
  5275篇
  2024年   18篇
  2023年   112篇
  2022年   91篇
  2021年   141篇
  2020年   171篇
  2019年   225篇
  2018年   205篇
  2017年   227篇
  2016年   226篇
  2015年   209篇
  2014年   210篇
  2013年   259篇
  2012年   215篇
  2011年   244篇
  2010年   208篇
  2009年   184篇
  2008年   194篇
  2007年   227篇
  2006年   218篇
  2005年   160篇
  2004年   129篇
  2003年   143篇
  2002年   130篇
  2001年   127篇
  2000年   105篇
  1999年   103篇
  1998年   87篇
  1997年   74篇
  1996年   80篇
  1995年   73篇
  1994年   54篇
  1993年   55篇
  1992年   57篇
  1991年   65篇
  1990年   36篇
  1989年   39篇
  1988年   17篇
  1987年   26篇
  1986年   14篇
  1985年   21篇
  1984年   25篇
  1983年   20篇
  1982年   14篇
  1981年   5篇
  1980年   10篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1958年   2篇
排序方式: 共有5275条查询结果,搜索用时 15 毫秒
81.
Ergosterol, a membrane sterol found in fungi but not in plants, was used to estimate live mycelial biomass in ectomycorrhizae. Loblolly pine (Pinus taeda L.) seeds were sown in April 1993 and grown with standard nursery culture practices. Correlations between total seedling ergosterol and visual assessment of mycorrhizal colonization were high during July and August but low as ectomycorrhizal development continued into the growing season. Percentages of mycelial dry weight over lateral roots decreased from 9% in July to 2.5% in November because seedling lateral root dry weight accumulated faster than mycelial dry weight. Total ergosterol per seedling increased from July through February. As lateral root dry weight ceased to increase during winter months, ectomycorrhizal mycelia became the major carbohydrate sink of pine seedlings. No distinctive seasonal pattern of soil ergosterol content was observed. The impact of ectomycorrhizal fungi on plant carbohydrate source-sink dynamics can be quantitatively estimated with ergosterol analysis but not with conventional visual determination.  相似文献   
82.
Wheat straw was pretreated with saturated lithium chloride in 4 m hydrochloric acid at 50°C for 1 h, then hydrolysed at 100°C for 1 min, to give 84% conversion to monosaccharides. Particle sizes, 150–355 mesh, were easily hydrolysed. Samples pretreated with saturated lithium chloride in 1 m hydrochloric acid at 27°C for 24 h were hydrolysed by Trichoderma viride cellulase (MVA 1284) [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] to give 20–23% monosaccharides for particle sizes of 150–250 mesh, and 82–95.4% for particle sizes of 250–355 mesh.  相似文献   
83.
Summary Field studies to determine the effect of zero and shallow (10 cm) cultivation on microbial biomass were conducted on several Chernozemic soils in western Canada. Using the CHCl3 fumigation method, the distribution of microbial biomass N and the immobilization and subsequent release of added15N (15N-urea) from the microbial biomass were determined in the A horizon, at the 0 to 5 and 5 to 10 cm depth, during the growing season for spring wheat.Temporal variation in microbial biomass N, associated with the development of the rhizosphere, was characterized by an increase between Feekes stage 1 and 5 or 10 and decrease at Feekes stage 11.4. Over the long term, the variation in biomass N between tillage systems corresponded with crop residue distribution. Immobilization of fertilizer N was related to the increase in biomass N from Feekes stage 1, which in turn, was associated with the incorporation of recent crop residues or levels of labile organic matter in the surface soil. The study demonstrated the relatively rapid remineralization of immobilized fertilizer N under field conditions and emphasized the role of the microbial biomass N as both a sink and source of mineral N.  相似文献   
84.
Summary The effects of disturbing (cultivating) and stockpiling prairie grassland topsoil on microbial activity, microbial biomass C, plant production and decomposition potentials were studied by measuring CO2 efflux from unamended and glucose amended soil in the laboratory and by conducting a pot and litter bag study in the greenhouse. Stockpiling appeared to have very little effect on soil respiratory activity, but did reduce the microbial biomass C levels. Throughout the 3 year study the microbial biomass C in the surface soil of the stockpile was less than that in the undisturbed soil, while the biomass C in soil at the bottom of the stockpile was at no time significantly different from that in the undisturbed soil. The reduction in microbial biomass C in the surface soil immediately after stockpiling was attributed to a decrease in the soil organic C levels caused by a slight dilution of the topsoil with subsurface mineral soil, and the exposure of the stockpile surface to extreme environmental conditions. Soils from all depths of the stockpile responded more slowly to the addition of glucose than soil from the undisturbed and cultivated treatments even when no differences in biomass were detected between the undisturbed and stockpiled soils. It is postulated that the rapidity with which the soil microbial biomass responds to glucose additions may be a sensitive indicator of stress on the soil biological components. The reduction in biomass after storage for 1 year had no adverse effects on the decomposition or primary production potential of the stored soil. Rather, shoot production by fall rye was stimulated in the stored topsoil, presumably a result of better N nutrition.  相似文献   
85.
Mineralization dynamics in fallow dryland wheat plots,Colorado   总被引:2,自引:0,他引:2  
Summary There was a flush of mineralization in fallow wheat plots in the wet and warm summer of 1982 at Akron, Colorado. Peak mineralization rates and concentrations of N and P coincided with a 2.5-fold increase in protozoan biomass. No-till contained considerably more activity than stubble mulch plots, especially in the surface 2.5 cm and there was more water storage in no-till on all dates. Differential management of agricultural residues and the resultant effects upon the microbial community significantly altered patterns of nutrient cycling.  相似文献   
86.
Continuous calorimetry has been applied to monitoring the heat evolution of Saccharomyces cerevisiae grown on d-glucose. The heat evolution, together with the energy and carbon balances, was used to evaluate the energetic efficiency of biomass, by-product biosynthesis, fermentative heat evolution as well as the maintenance energy of S. cerevisiae in ‘aerobic fermentation’ and ‘aerobic respiration’. In aerobic fermentation, under catabolite repression, the fraction of substrate energy converted to heat evolution, maintenance requirement, and biomass decreased with the increase of d-glucose concentration. The fraction of substrate energy converted to ethanol is the highest value and it could contribute up to 70% of the total substrate energy. In aerobic respiration, 43% of the total substrate energy was evolved as heat. While 50% of the total substrate energy was converted into biomass, only 7% of the total substrate energy was used for maintenance functions. The maintenance energy coefficient of S. cerevisiae was determined to be 0.427 MJ kg?1 cell h?1 (0.102 kcal g?1 cell h?1). For the first time, heat evolution together with yield-maintenance energy was used to predict biomass concentration during the fed-batch cultivation of S. cerevisiae.  相似文献   
87.
Wolfgang Horn 《Hydrobiologia》1991,225(1):115-120
Planktonic crustacean biomass as well as structure are important factors influencing water transparency. The significant dependence of the water quality (Secchi depth) on the concentration and the share of the Daphnia biovolume and not on the total Crustacea biovolume in the Saidenbach reservoir indicates that the density of the Crustacea is only a measure of the cleaning performance, if Daphnia dominates. Using the mean size, the influence of the crustacean structure on the Secchi depth can be recorded. If big size categories prevail (like Daphnia) the water transparency is high. The mainly occurrence of little species (Mesocyclops, Bosmina) results in lower Secchi depths. However, a well defined (significant) relationship is being prevented by the different feeding behaviour of the several species.  相似文献   
88.
The gap between the theoretical biological potential of microalgae and the biomass productivity obtained with algal culture in tubular biophotoreactors is due to a reduced growth rate related to hydrodynamic stress of pumping. High levels of mixing are necessary to reach a turbulent flow of the culture, in order to optimize the light regime. The optimal conditions of pumping to produce this significant liquid mixing may produce some cell damage. Factors affecting this hydrodynamic stress (geometry of the bioreactor involved, type of pump utilized, morphology of algal cells, physiological conditions of microalgae, etc.) are discussed.  相似文献   
89.
刺槐(Robinia pseudoacacia)生长迅速,适应性强,耐干旱,树冠大郁闭早,枯枝落叶多易分解,改良土壤的作用明显,已成为陕西渭北地区的主要造林树种。多年来,许多学者的研究表明,森林凋落  相似文献   
90.
浙江省松阳县黄山松种群的密度与生物量动态   总被引:2,自引:0,他引:2       下载免费PDF全文
 本文研究了浙江省松阳县关山源地区黄山松种群的密度与生物量动态以及它们之间的相互关系。黄山松是该地区森林演替中的先锋种群之一。在演替过程中,黄山松种群的动态可分成三个阶段。大约在黄山松种群入侵次生裸地的最初10年期间,种群的密度和生物量迅速增长(阶段Ⅰ)。此后,种群密度达到饱和,由于自疏作用出现以及其他阔叶树种的入侵,种群密度开始急剧下降,个体平均重量和种群生物量迅速增长(阶段Ⅱ),–3/2自疏定律适用于种群动态的此阶段。随着阔叶树种进入林冠层,虽然个体平均重量仍缓慢增长,黄山松种群的密度和种群生物量逐渐下降直至退出群落(阶段Ⅲ)。但在一些特殊生境中(如裸岩陡坡或山脊),黄山松种群可形成稳定的地形顶极群落,其种群密度、个体平均重量和种群生物量可长期维持相对稳定的状态。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号