首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2141篇
  免费   98篇
  国内免费   215篇
  2023年   20篇
  2022年   46篇
  2021年   59篇
  2020年   68篇
  2019年   74篇
  2018年   79篇
  2017年   67篇
  2016年   62篇
  2015年   60篇
  2014年   124篇
  2013年   132篇
  2012年   71篇
  2011年   117篇
  2010年   72篇
  2009年   132篇
  2008年   156篇
  2007年   136篇
  2006年   117篇
  2005年   111篇
  2004年   76篇
  2003年   66篇
  2002年   61篇
  2001年   37篇
  2000年   40篇
  1999年   58篇
  1998年   47篇
  1997年   46篇
  1996年   29篇
  1995年   29篇
  1994年   42篇
  1993年   26篇
  1992年   28篇
  1991年   20篇
  1990年   18篇
  1989年   17篇
  1988年   20篇
  1987年   9篇
  1986年   12篇
  1985年   6篇
  1984年   12篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1973年   4篇
  1972年   2篇
  1965年   2篇
  1953年   2篇
排序方式: 共有2454条查询结果,搜索用时 15 毫秒
121.
Saccharomyces cerevisiae and its close congener S. paradoxus are typically indistinguishable by the phenotypic criteria of classical yeast taxonomy, but they are evolutionarily distinct as indicated by hybrid spore inviability and genomic sequence divergence. Previous work has shown that these two species coexist in oak-associated microhabitats at natural woodland sites in North America. Here, we show that sympatric populations of S. cerevisiae and S. paradoxus from a single natural site are phenotypically differentiated in their growth rate responses to temperature. Our main finding is that the S. cerevisiae population exhibits a markedly higher growth rate at 37 degrees C than the S. paradoxus population; we also find possible differences in growth rate between these populations at two lower temperatures. We discuss the implications of our results for the coexistence of these yeasts in natural environments, and we suggest that thermal growth response may be an evolutionarily labile feature of these organisms that could be analyzed using genomic approaches.  相似文献   
122.
Proteins derived from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, which performs plant-type oxygenic photosynthesis, are suitable for biochemical, biophysical and X-ray crystallographic studies. We found that T. elongatus displays natural transformation, and we established a simple and efficient protocol for transferring exogenous DNAs into the organisms genome. We obtained transformants directly on selective agar plates without having to amplify them prior to plating. We constructed several targeting vectors that enabled us to insert exogenous DNAs into specific sites without disrupting endogenous genes and operons. We also developed a new selectable marker gene for T. elongatus by optimizing the codons of the gene encoding a kanamycin nucleotidyltransferase derived from the thermophilic bacterium Bacillus stearothermophilus. This synthetic gene enabled us to select transformants as kanamycin-resistant colonies on agar plates at 52°C. Optimization of the conditions for natural transformation resulted in a transformation efficiency of up to 1.7×103 transformants per g of DNA. The exogenous DNAs were integrated stably into the targeted sites of the T. elongatus genome via homologous recombination by double crossovers.Communicated by H. Ikeda  相似文献   
123.
Natural polyphenols (PP) are known as potent antioxidants, which are believed to prevent many degenerative diseases, including cancer and atherosclerosis. Much attention in the literature has been given to the antioxidant activity of PP-containing products; however, information on the antioxidative properties of individual PP is rather poor and controversial. In this work, the chain-breaking antioxidant activities of several natural PP and their synthetic analogs were determined during the chain oxidation of methyl linoleate in an aqueous buffered, pH 7.40, micellar solution of Triton X-100, induced by 2,2'-azobis(2-amidinopropan) dihydrochloride at 37 degrees C. Use of the mode of the controlled chain reaction allowed separate determination of the rate constant for the reaction of PP with the lipid peroxy radical and the stoichiometric factor of inhibition (f), which shows how many kinetic chains can be terminated by one molecule of PP. All the PP studied display a pronounced antioxidant activity. A significant difference in f value between catechol derivatives and pyrogallol derivatives was found. While with pyrogallol derivatives (gallic acid, epigallocatechin, propyl gallate, myricetin), f was found to be around 2, the theoretically expected value, f, for catechol derivatives (catechol, catechin, epicatechin, quercetin, rutin, caffeic acid) was found to be within the range 3.6-6.3. The elevated antioxidant capacity of catechol derivatives may be explained by the contribution of products of PP oxidative transformation, most likely by dimers, to inhibition. With catechin, epicatechin, and quercetin, the reactivity of products exceeds that of original PP. A real chain-breaking antioxidant activity of PP is likely determined not so much by the reactivity of the original PP as by the probability of the formation of active products and their antioxidant activities. The above findings were applied to explain some features of the antioxidant activity of teas and red wines.  相似文献   
124.
The carbohydrate of Gal-alpha1,3-Gal is thought to be the major antigenic epitope present on pig vascular endothelium. The peptides that mimic the binding of antigenic epitope (Gal-alpha1,3-Gal) to lectin BS-I-B4 were identified from screening a filamentous phage-displayed random library. A phage bearing the peptide NCVSPYWCEPLAPSARA has been identified to bind the lectin strongly. Melibiose was able to inhibit the binding of the human natural anti-alpha Gal antibody to the peptide competitively. Our experiments show that the peptide mimetic of Gal-alpha1,3-Gal is able to inhibit the agglutination of pig RBCs by human natural antibody or lectin BS-I-B4. The peptide inhibitor of human natural antibodies may prove useful in pig-to-human xenotransplantation.  相似文献   
125.
The disaccharide Gal(alpha)1-3Gal is found on more than 45 different molecules on the endothelium of porcine cells and has recently attracted considerable interest, being the major target recognized by xenoreactive antibodies. In this study, the distribution and topology of Gal(alpha)1-3Gal on porcine endothelial cells was examined to access whether some Gal(alpha)1-3Gal-containing molecules might be preferentially recognized by antibodies binding to Gal(alpha)1-3Gal. Thirteen percent of the Gal(alpha)1-3Gal was found on glycolipid and 87% on glycoproteins. Of all the glycoproteins and glycolipids containing Gal(alpha)1-3Gal, two molecules, fibronectin and the integrin beta1 subunit, were most intensely labeled by galactose oxidase, suggesting that these molecules may be preferentially exposed on the apical surface of the endothelium. Binding of anti-Gal(alpha)1-3Gal antibodies to endothelial cell surfaces significantly diminished labeling of fibronectin and the integrin beta1 subunit by galactose oxidase, indicating that these glycoproteins are targets for the antibodies when binding to intact porcine cells.  相似文献   
126.
The variation in length of the intergenic spacer (IGS) region of the ribosomal DNA repeat unit was examined in 63 accessions of wild barley, Hordeum spontaneum, and seven accessions of cultivated barley, Hordeum vulgare. The accessions of wild barley were collected from ecologically diverse climatic and edaphic microsites in Israel, and the barley cultivars were those grown in India. Sixteen spacer-length variants (slvs) observed in the present study presumably belonged to two known rDNA loci (Rrn1 and Rrn2). Each accession had one or more variants, which together represented the rDNA phenotype. The rDNA phenotypes of wild barley accessions were widely diverse and differed substantially from those of cultivated barley. The slv phenotypes and the corresponding alleles were shown to be largely correlated with different climatic, edaphic and ecogeographical microsites and niches (the ”Evolution Canyon” at Lower Nahal Oren, Mount Carmel; and Tabigha, Eastern Upper Galilee Mountains), so that a particular rDNA phenotype of an accession could be used to predict the climate and soil to which the accession belonged. This sharp microsite ecogeographic variation in ribosomal DNA appears adaptive in nature, and is presumably driven by climatic and edaphic natural selection. Received: 1 March 2001 / Accepted: 21 May 2001  相似文献   
127.
The inhibitory activity of 34 natural products of various structural classes on hydroxyphenylpyruvate dioxygenase (HPPD), the target site for triketone herbicides, and the mode of interaction of selected natural products were investigated. Recombinant HPPD from arabidopsis is sensitive to several classes of natural compounds including, in decreasing order of sensitivity, triketones, benzoquinones, naphthoquinones and anthraquinones. The triketone natural products acted as competitive tight-binding inhibitors, whereas the benzoquinones and naphthoquinones did not appear to bind tightly to HPPD. While these natural products may not have optimal structural features required for in vivo herbicidal activity, the differences in their kinetic behavior suggest that novel classes of HPPD inhibitors may be developed based on their structural backbones.  相似文献   
128.
Geometries and energies of formation of bilirubin formed by reduction of biliverdin via three meso carbon sites, the , and positions, have been calculated using semiempirical methods. It has been shown that -bilirubin with a ridge-tile conformation forms six intramolecular hydrogen bonds and is the most stable of the three above mentioned positions by at least 22 kcal mol–1. Reduction pathways for -, - and -bilirubin formations from biliverdin are studied in detail. The roles of loss of conjugation and hydrogen bond formations in stability of different conformers have been discussed. -Bilirubin was fully optimized by using ab initio methods. Fine refinements of calculated results show excellent agreement with experimental results. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-002-0078-9.Electronic Supplementary Material available.  相似文献   
129.
The biochemical pathways involved in the biosynthesis and accumulation of storage lipids in seeds have been extensively studied. However, the regulatory mechanisms of those pathways, their environmental interactions and the ecological implications of variation are poorly understood. We have initiated a new approach: the analysis of natural variation in Arabidopsis thaliana. Three hundred and sixty accessions were surveyed for content of oil, very long chain fatty acids (VLCFAs) and polyunsaturated fatty acids (PUFAs) in their seeds. The results revealed extensive natural variation. A core set of accessions, the seeds of which reproducibly contain extreme amounts of oil, VLCFAs and PUFAs have been identified. Reproducible oil content ranged from 34.6 to 46.0% of seed dry weight. VLCFA content ranged from 13.0 to 21.2% of total fatty acids. PUFA content, ranged from 53.3 to 66.1% of total fatty acids. Interactions were also identified for PUFA and VLCFA content of seeds with vernalisation of plants. Mapping of the regions of the genome involved in controlling the traits was conducted in an F(2) population and indicated that natural variation at the loci FAE1 and FAD3 might be involved in the regulation of VLCFA and PUFA content, respectively. A set of accessions, which capture a broad range of the natural variation for these traits available in A. thaliana, has been selected to form a core set which can be used to further dissect the genetics of the regulation of seed lipid traits and to identify the genes involved.  相似文献   
130.
NAO is a natural water soluble antioxidant that was isolated and purified from spinach leaves. Using HPLC, NMR, and CMR spectroscopy, the main components were identified as flavonoids and p-coumaric acid derivatives. The NAO was found to be a very effective antioxidant in several in vivo and in vitro biological systems. In the present study, the antioxidant activity of the novel antioxidant glucurinated flavonoid (GF) isolated and characterized from NAO, is compared to well-known antioxidants. In addition, the direct free radical scavenging properties of the purified component GF were studied using the electron spin resonance (ESR) technique. GF and NAO were found to be superior to EGCG and NAC and to the Vitamin E homologue Trolox in inhibiting reactive oxygen species (ROS) formation in the autooxidation system of linoleic acid and in fibroblasts exposed to metal oxidation. GF and NAO were found to inhibit the ESR signal intensity of DMPO-O(2) radical formation during the riboflavin photodynamic reaction. 10 mM GF caused approximately 90% inhibition in the intensity of the ESR signal, while NAO at a concentration of 60 microg/ml caused an inhibition of about 50%. Using the Fenton reaction, GF and NAO were found to inhibit DMPO-OH radical formation. A concentration of 2 mM GF caused a 70% inhibition in the intensity of the DMPO-OH radical ESR signal, while propyl gallate at the same concentration caused only 50% inhibition. Furthermore, both GF and NAO also inhibited the (1)O(2) dependent TEMPO radical generated in the photoradiation TPPS4 system. About 80% inhibition was obtained by 4 mM GF. The results obtained indicate that the natural antioxidants derived from spinach may directly affect the scavenging of ROS and, as a consequence, may be considered as effective sources for combating oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号