首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11365篇
  免费   792篇
  国内免费   400篇
  12557篇
  2024年   11篇
  2023年   236篇
  2022年   336篇
  2021年   301篇
  2020年   342篇
  2019年   423篇
  2018年   434篇
  2017年   350篇
  2016年   354篇
  2015年   409篇
  2014年   593篇
  2013年   958篇
  2012年   502篇
  2011年   629篇
  2010年   560篇
  2009年   627篇
  2008年   641篇
  2007年   677篇
  2006年   628篇
  2005年   639篇
  2004年   482篇
  2003年   337篇
  2002年   341篇
  2001年   187篇
  2000年   151篇
  1999年   147篇
  1998年   134篇
  1997年   150篇
  1996年   90篇
  1995年   113篇
  1994年   110篇
  1993年   75篇
  1992年   63篇
  1991年   43篇
  1990年   50篇
  1989年   35篇
  1988年   30篇
  1987年   41篇
  1986年   14篇
  1985年   41篇
  1984年   63篇
  1983年   39篇
  1982年   44篇
  1981年   40篇
  1980年   21篇
  1979年   17篇
  1978年   15篇
  1977年   8篇
  1976年   7篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
An increasing number of studies support the hypothesis that smaller populations face a higher risk of extinction, and declining population sizes are therefore one of the focal points in plant conservation. In small populations, loss of genetic diversity is often related to reduced reproductive fitness. For the rare Dictamnus albus in Central Germany, an earlier study had already confirmed a significant correlation between population size and genetic diversity. In order to assess whether these variables correlate with fitness components, plant height; flower, fruit and seed production; and germination were studied in a total of 11 populations of different size. In the seven populations that were sampled over two consecutive years, differences among populations and among years were tested using a Two-Way ANOVA. Co-linearity among variables was assessed using principal component analysis (PCA), followed by calculating correlations between ordination axes and both population size and genetic diversity. Plant height and flower number were uncorrelated to the other variables and, together with germination, did not show any correlation to either population size or genetic diversity. However, both size and genetic diversity of populations correlated significantly with other PCA axes that reflected reproductive components such as fruit number, seed number, seed fruit ratio, and seed mass. Our results support the idea that reproduction is hampered in small populations and raise concerns over the loss of genetic diversity in D. albus.  相似文献   
902.
亚心形扁藻(Platymonas subcordiformis)是新发现的一株产氢海洋单细胞绿藻,经过胁迫调控可实现一定时间的持续产氢。氢酶是亚心形扁藻在胁迫条件下进行光合产氢的一个关键酶。但到目前为止,亚心形扁藻氢酶相关信息仍不清楚。利用蛋白合成抑制剂氯霉素和放线菌酮对亚心形扁藻氢酶活性进行考察,同时利用免疫印迹技术和免疫胶体金电镜对亚心形扁藻氢酶蛋白进行亚细胞定位分析。结果表明:亚心形扁藻氢酶蛋白可能由胞浆内合成,在叶绿体行使功能。采用免疫共沉淀技术富集亚心形扁藻细胞氢酶蛋白,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)对免疫共沉淀复合物进行分离,从胶中切取目的蛋白条带,胶内酶解后进行基质辅助激光解吸飞行时间质谱(MALDI-TOF-MS)分析,得到相应的肽指纹图谱,通过搜索数据库检索初步断定亚心形扁藻氢酶蛋白为铁氢酶。  相似文献   
903.
The long-term response of leaf photosynthesis to rising CO2 concentrations [CO2] depends on biochemical and morphological feedbacks. Additionally, responses to elevated [CO2] might depend on the nutrient availability and the light environment, affecting the net carbon uptake of a forest stand. After 6 yr of exposure to free-air CO2 enrichment (EUROFACE) during two rotation cycles (with fertilization during the second cycle), profiles of light, leaf characteristics and photosynthetic parameters were measured in the closed canopy of a poplar (Populus) short-rotation coppice. Net photosynthetic rate (A(growth)) was 49% higher in poplars grown in elevated [CO2], independently of the canopy position. Jmax significantly increased (15%), whereas leaf carboxylation capacity (Vcmax), leaf nitrogen (N(a)) and chlorophyll (Chl(a)) were unaffected in elevated [CO2]. Leaf mass per unit area (LMA) increased in the upper canopy. Fertilization created more leaves in the top of the crown. These results suggest that the photosynthetic stimulation by elevated [CO2] in a closed-canopy poplar coppice might be sustained in the long term. The absence of any down-regulation, given a sufficient sink capacity and nutrient availability, provides more carbon for growth and storage in this bioenergy plantation.  相似文献   
904.
Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination without glycan release using mass spectrometry (MS). The benefits of a direct glycoprotein analysis approach include minimal sample manipulation and retention of structural details. A quantitative comparison of gel-separated glycoprotein isoforms from twelve AD patients and twelve control subjects was performed with glycoprotein-specific and total protein stains. We have also compared glycoforms in pooled CSF obtained from AD patients and control subjects with mass spectrometry. One isoform of alpha1-antitrypsin showed decreased glycosylation in AD patients while another glycosylated isoform of an unassigned protein was up-regulated. Protein expression levels of alpha1-antitrypsin were decreased, while the protein levels of apolipoprotein E and clusterin were increased in AD. No specific glycoform could be specifically assigned to AD.  相似文献   
905.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   
906.
907.

Background

In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells.

Method

Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry.

Results

The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 105 and (0.85 ± 0.11) × 105, respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC.

Conclusion

Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-43) contains supplementary material, which is available to authorized users.  相似文献   
908.
Two green algae (Chlorella vulgaris and Scenedesmus obliquus) and four blue-green algae (Anacystis nidulans, Microcystis aeruginosa, Oscillatoria rubescens and Spirulina platensis) were grown in 81 batch cultures at different nitrogen levels. In all the algae increasing N levels led to an increase in the biomass (from 8 to 450 mg/l), in protein content (from 8 to 54 %) and in chlorophyll. At low N levels, the green algae contained a high percentage of total lipids (45 % of the biomass). More than 70 % of these were neutral lipids such as triacylglycerols (containing mainly 16:0 and 18:1 fatty acids) and trace amounts of hydrocarbons. At high N levels, the percentage of total lipids dropped to about 20 % of the dry weight. In the latter case the predominant lipids were polar lipids containing polyunsaturated C16 and C18 fatty acids. The blue-green algae, however, did not show any significant changes in their fatty acid and lipid compositions, when the nitrogen concentrations in the nutrient medium were varied. Thus the green but not the blue-green algae can be manipulated in mass cultures to yield a biomass with desired fatty acid and lipid compositions. The data may indicate a hitherto unrecognized distinction between prokaryotic and eukaryotic organisms.  相似文献   
909.

Premise of the Study

The pygmy forest, a plant community of severely stunted conifers and ericaceous angiosperms, occurs on patches of highly acidic, nutrient‐poor soils along the coast of Northern California, USA. This system is an excellent opportunity to study the effect of severe nutrient deficiency on leaf physiology in a naturally‐occurring ecosystem. In this study, we seek to understand the physiological mechanisms stunting the plants' growth and their implications for whole plant function.

Methods

We measured 14 traits pertaining to leaf photosynthetic function or physical structure on seven species. Samples were taken from the pygmy forest community and from conspecifics growing on higher‐nutrient soils, where trees may grow over 30 m tall.

Key Results

Pygmy plants of most species maintained similar area‐based photosynthetic and stomatal conductance rates to conspecific controls, but had lower specific leaf area (leaf area divided by dry weight), lower percent nitrogen, and less leaf area relative to xylem growth. Sequoia sempervirens, a species rare in the pygmy forest, had a categorically different response from the more common plants and had remarkably low photosynthetic rates.

Conclusions

Pygmy plants were not stunted by low photosynthetic rates on a leaf‐area basis; instead, several species had restricted whole‐plant photosynthesis due to low leaf area production. Pygmy plants of all species showed signs of greater carbon investment in their leaves and higher production of nonphotosynthetic leaf tissue, further contributing to slow growth rates.  相似文献   
910.
In this study, the human cytochrome P450 (CYP) 2A6 was used in order to modify the alkaloid production of tobacco plants. The cDNA for human CYP2A6 was placed under the control of the constitutive 35S promoter and transferred into Nicotiana tabacum via Agrobacterium-mediated transformation. Transgenic plants showed formation of the recombinant CYP2A6 enzyme but no obvious phenotypic changes. Unlike wild-type tobacco, the transgenic plants accumulated cotinine, a metabolite which is usually formed from nicotine in humans. This result substantiates that metabolic engineering of the plant secondary metabolism via mammalian P450 enzymes is possible in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号