首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10613篇
  免费   773篇
  国内免费   563篇
  2024年   38篇
  2023年   235篇
  2022年   395篇
  2021年   459篇
  2020年   419篇
  2019年   434篇
  2018年   450篇
  2017年   333篇
  2016年   334篇
  2015年   439篇
  2014年   451篇
  2013年   622篇
  2012年   321篇
  2011年   361篇
  2010年   269篇
  2009年   375篇
  2008年   375篇
  2007年   435篇
  2006年   379篇
  2005年   331篇
  2004年   283篇
  2003年   297篇
  2002年   263篇
  2001年   176篇
  2000年   165篇
  1999年   192篇
  1998年   197篇
  1997年   187篇
  1996年   190篇
  1995年   176篇
  1994年   180篇
  1993年   182篇
  1992年   179篇
  1991年   156篇
  1990年   149篇
  1989年   146篇
  1988年   112篇
  1987年   128篇
  1986年   117篇
  1985年   158篇
  1984年   164篇
  1983年   109篇
  1982年   113篇
  1981年   113篇
  1980年   81篇
  1979年   83篇
  1978年   49篇
  1977年   42篇
  1976年   39篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 540 毫秒
991.
992.
993.
994.
The metabolism of microbial organisms and its diversity are partly the result of an adaptation process to the characteristics of the environments that they inhabit. In this work, we analyze the influence of lifestyle on the content of promiscuous enzymes in 761 nonredundant bacterial and archaeal genomes. Promiscuous enzymes were defined as those proteins whose catalytic activities are defined by two or more different Enzyme Commission (E.C.) numbers. The genomes analyzed were categorized into four lifestyles for their exhaustive comparisons: free‐living, extremophiles, pathogens, and intracellular. From these analyses we found that free‐living organisms have larger genomes and an enrichment of promiscuous enzymes. In contrast, intracellular organisms showed smaller genomes and the lesser proportion of promiscuous enzymes. On the basis of our data, we show that the proportion of promiscuous enzymes in an organism is mainly influenced by the lifestyle, where fluctuating environments promote its emergence. Finally, we evidenced that duplication processes occur preferentially in metabolism of free‐living and extremophiles species. Proteins 2015; 83:1625–1631. © 2015 Wiley Periodicals, Inc.  相似文献   
995.
996.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   
997.
998.
The balance between carbon assimilation, storage and utilisation during photosynthesis is dependent on partitioning of photoassimilate between starch and sucrose, and varies in response to changes in the environment. However, the extent to which the capacity to modulate carbon partitioning rapidly through short‐term allosteric regulation may contribute to plant performance is unknown. Here we examine the physiological role of fructose 2,6‐bisphosphate (Fru‐2,6‐P2) during photosynthesis, growth and reproduction in Arabidopsis thaliana (L.). In leaves this signal metabolite contributes to coordination of carbon assimilation and partitioning during photosynthesis by allosterically modulating the activity of cytosolic fructose‐1,6‐bisphosphatase. Three independent T‐DNA insertional mutant lines deficient in 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (F2KP), the bifunctional enzyme responsible for both the synthesis and degradation of Fru‐2,6‐P2, lack Fru‐2,6‐P2. These plants have normal steady‐state rates of photosynthesis, but exhibit increased partitioning of photoassimilate into sucrose and have delayed photosynthetic induction kinetics. The F2KP‐deficient plants grow normally in constant environments, but show reduced growth and seed yields relative to wildtype plants in fluctuating light and/or temperature. We conclude that Fru‐2,6‐P2 is required for optimum regulation of photosynthetic carbon metabolism under variable growth conditions. These analyses suggest that the capacity of Fru‐2,6‐P2 to modulate partitioning of photoassimilate is an important determinant of growth and fitness in natural environments.  相似文献   
999.
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl‐constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER‐to‐chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号