首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10613篇
  免费   773篇
  国内免费   563篇
  2024年   38篇
  2023年   235篇
  2022年   395篇
  2021年   459篇
  2020年   419篇
  2019年   434篇
  2018年   450篇
  2017年   333篇
  2016年   334篇
  2015年   439篇
  2014年   451篇
  2013年   622篇
  2012年   321篇
  2011年   361篇
  2010年   269篇
  2009年   375篇
  2008年   375篇
  2007年   435篇
  2006年   379篇
  2005年   331篇
  2004年   283篇
  2003年   297篇
  2002年   263篇
  2001年   176篇
  2000年   165篇
  1999年   192篇
  1998年   197篇
  1997年   187篇
  1996年   190篇
  1995年   176篇
  1994年   180篇
  1993年   182篇
  1992年   179篇
  1991年   156篇
  1990年   149篇
  1989年   146篇
  1988年   112篇
  1987年   128篇
  1986年   117篇
  1985年   158篇
  1984年   164篇
  1983年   109篇
  1982年   113篇
  1981年   113篇
  1980年   81篇
  1979年   83篇
  1978年   49篇
  1977年   42篇
  1976年   39篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
91.
Chemical transformations, like osmotic translocations, are transport processes when looked at in detail. In chemiosmotic systems, the pathways of specific ligand conduction are spatially orientated through osmoenzymes and porters in which the actions of chemical group, electron and solute transfer occur as vectorial (or higher tensorial order) diffusion processes down gradients of total potential energy that represent real spatially-directed fields of force. Thus, it has been possible to describe classical bag-of-enzymes biochemistry as well as membrane biochemistry in terms of transport. But it would not have been possible to explain biological transport in terms of classical transformational biochemistry or chemistry. The recognition of this conceptual asymmetry in favour of transport has seemed to be upsetting to some biochemists and chemists; and they have resisted the shift towards thinking primarily in terms of the vectorial forces and co-linear displacements of ligands in place of their much less informative scalar products that correspond to the conventional scalar energies. Nevertheless, considerable progress has been made in establishing vectorial metabolism and osmochemistry as acceptable biochemical disciplines embracing transport and metabolism, and bioenergetics has been fundamentally transformed as a result.  相似文献   
92.
A system was devised for the in vitro culture of soybean fruits. The culture system consisted of a single fruit attached to a short piece of stem through which the nutrients were supplied. The fruit explants were taken when pods were fully expanded and the seeds at initial stages of growth. During a 7-day culture period, the seeds accumulated dry matter and protein in quantities comparable to those in situ. Omission of the C source (sucrose) from the medium resulted in no dry matter accumulation in the seeds, but omission of the N source (glutamine) still led to some protein accumulation, indicating mobilization of N from other parts of the fruit explant. Optimum protein accumulation occurred when glutamine was supplied at 1.2 mg N ml-1. Protein accumulation in the seeds was highly dependent on the nature of the N source. Glutamine, asparagine and the ureide, allantoin, were equally the most efficient sources, whereas several other amino acids tested showed lower degrees of efficiency. The data indicate a high metabolic capacity of the fruit tissues for principal N transport compounds of soybean, namely allantoin, asparagine and glutamine. The culture system described should prove useful for developmental and metabolic studies where the complex influence of the rest of the plant is to be avoided.Abbreviations ALN allantoin - ALC allantoic acid Preliminary report presented at the IV World Soybean Research Conference, Buenos Aires, Arggentina, March 1989.  相似文献   
93.
Metabolism of a subtropical Brazilian lagoon   总被引:1,自引:1,他引:0  
Total community, planktonic and benthic metabolisms were measured by using the carbon dioxide production and consumption, the diurnal curve' method and the in situ bottle incubation technique over an annual cycle in two sublagoons of the Saquarema Lagoon, Brazil. Metabolic rates of the phytoplankton-based lagoon were characterized by considerable daytime and daily variability in production and respiration, by a seasonal shift between net autotrophy and heterotrophy and by an annual balance of production (P = 105 ± 65 mmoles/m2/dayn = 25) and respiration (R = 102 ± 50 mmoles/m2/dayn = 25). Total community metabolism was similar throughout the lagoon, but phytoplankton assimilation rates and benthic respiration showed spatial differences. Bottle incubations compared to total community free water respiration suggested that the pelagic community was 2–5 times more active than the benthos  相似文献   
94.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   
95.
Summary In the absence of a suitable energy source, mouse oocytes cultured in vitro resume, but fail to complete, meiotic maturation. However, little is known about the underlying mechanisms leading to this meiotic failure. We utilized pyruvate-deficient medium to test for the role of pyruvate throughout the meiotic maturation process. Germinal vesicle-stage (GV) oocytes underwent germinal vesicle breakdown (GVBD), but failed to form a polar body when cultured continuously in pyruvate-free medium. However, when GV oocytes were preincubated for 4 h in pyruvate-free medium containing dibutyryl cyclic adenosine monophosphate (dbcAMP) and then cultured in pyruvate-free medium, GVBD was markedly inhibited. Preincubation of GV oocytes in dbcAMP and cycloheximide, followed by culture in cycloheximide only, also inhibited GVBD. A longer preincubation period was required in the cycloheximide-dbcAMP case (12 h) than in pyruvate-free-dbcAMP medium situation (4 h). Strikingly, reassembly of the nuclear membrane without polar body formation was observed following GVBD in oocytes continuously cultured in pyruvate-free medium. The reassembled nuclear membrane increased in size with continued culture, and it surrounded partially-decondensed chromatin. Nuclear membrane reassembly also occurred in oocytes which had undergone GVBD during continuous culture in medium containing only cycloheximide. Reformation of nuclear membranes after GVBD was confirmed by electron-microscopic analyses of oocytes cultured in pyruvate-free medium or in the presence of cycloheximide. We conclude that both pyruvate and protein synthesis are required for nuclear membrane disassembly, whereas lack of pyruvate or protein synthesis is associated with interruption of the metaphase state and reassembly of the nuclear membrane. The evidence suggests that assembly and maintenance of an intact nucleus and its disintegration are all amenable to regulation by pyruvate, possibly via mechanism(s) involving protein synthesis.  相似文献   
96.
On artificial polyethylene membranes providing a thigmotropic signal, uredospores of the broad bean rust fungus Uromyces viciae-fabae differentiated a series of infection structures which in nature are necessary to invade the host tissue through the stomata. Within 24 h germ tubes, appressoria, substomatal vesicles, infection hyphae and haustorial mother cells were developed successively. Alterations in protein metabolism during infection structure differentiation of this obligate plant pathogen were analyzed in the absence of the host plant by high resolution two-dimensional polyacrylamide gel electrophoresis (2-DE) and silver staining. The norm pattern representing the 2-DE protein patterns of the whole developmental sequence of infection structures of U. viciae-fabae showed 733 spots. During infection structure differentiation 55 proteins were newly formed, altered in quantity, or disappeared. Major alterations in the protein pattern occurred during uredospore germination and when infection hyphae were formed. Uredospore germination was characterized by a decrease of acidic proteins and an increase mainly of proteins with isoelectric points ranging from weakly acidic to basic.Abbreviations 2-DE two-dimensional polyacrylamide gel electrophoresis - DAPI 4,6-diamino-phenylindol - kDa kilo Dalton - pl isoelectric point - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   
97.
Cultures of the cyanobacterium Microcystis firma show rhythmic uptake and release of ammonia under conditions of carbon limitation. The massive removal of ammonia from the medium during the first light phase has little impact on the intracellular pH: a pH shift of less than 0.2 U towards the alkaline can be measured by in vivo 31P NMR. Furthermore, the energy status of the cells remains regulated. In vivo 15N NMR of M. firma, cultivated either with labelled nitrate or ammonia as the sole nitrogen source, reveals only gradual differences in the pool of free amino acids. Additionally both cultivation types show -aminobutyric acid, acid amides and yet unassigned secondary metabolites as nitrogen storing compounds. Investigating the incorporation of nitrogen under carbon limitation, however, only the amide nitrogen of glutamine is found permanently labelled in situ. While transamination reactions are blocked, nitrate reduction to ammonia can still proceed. Cation exchange processes in the cell wall are considered regarding the ammonia disappearance in the first phase, and the control of ammonia uptake is discussed with respect to the avoidance of intracellular toxification.Abbreviations GABA -aminobutyric acid - GOGAT glutamate synthase - GS glutamine synthetase - MDP methylene diphosphonate - MOPSO 3-(N-morpholino)-2-hydroxy-propanesulfonic acid - NDPS nucieoside diphosphosugars - NOE nuclear Overhauser effect - NMR nuclear magnetic resonance For convenience, the term ammonia is used throughout to denote ammonia or ammonium ion when there is no good evidence as to which chemical species is involved  相似文献   
98.
The discovery of two distinct succinate thiokinases in mammalian tissues, one (G-STK) specific for GDP/GTP and the other (A-STK) for ADP/ATP, poses the question of their differential metabolic roles. Evidence has suggested that the A-STK functions in the citric acid cycle in the direction of succinyl-CoA breakdown (and ATP formation) whereas one role of the G-STK appears to be the re-cycling of succinate to succinyl-CoA (at the expense of GTP) for the purpose of ketone body activation. A third metabolic participation of succinyl-CoA is in haem biosynthesis. This communication shows that in chemically induced hepatic porphyria, when the demand for succinyl-CoA is increased, it is the level of G-STK only which is elevated, that of A-STK being unaffected. The results implicate G-STK in the provision of succinyl-CoA for haem biosynthesis, a conclusion which is further supported by the observation of a high G-STK/A-STK ratio in bone marrow.  相似文献   
99.
Laboratory microcosms were used to compare the effects of the littoral ostracod Cypridopsis vidua and the planktonic cladoceran Daphnia magna on community structure and metabolism. Filter-feeding by cladocerans, both in the presence and absence of ostracods, greatly reduced the abundance of planktonic algae when D. magna reached peak density around day 50; rotifers and euglenids were then limited to flocculent matter on the container bottom. Both net production and community respiration rates decreased as community composition changed. Microcosms containing ostracods as the only microcrustacean showed little reduction in total algal numbers but the otherwise dominant alga, Scenedesmus spp., was replaced by Ankistrodesmus spp. when peak ostracod density was reached around day 100. Rotifers were completely eliminated but euglenids were able to coexist with ostracods. Ostracods impacted community metabolism less than cladocerans, but depressed respiration slightly more than net production.  相似文献   
100.
Xanthobacter 124X when grom on 4-hydroxyphenylacetate was able to hydroxylate this compound yielding homogenisate. Ring fission of this latter compound gave maleylacetoacetate which was isomerized to fumarylacetoacetate. The isomerase involved resembled maleylacetoacetate isomerases in Gram-negative bacteria in that glutathione was required for activity. Fumarate and acetoacetate were both detected as products of the hydrolysis of fumarylacetoacetate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号