首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6642篇
  免费   414篇
  国内免费   232篇
  7288篇
  2024年   14篇
  2023年   49篇
  2022年   78篇
  2021年   88篇
  2020年   163篇
  2019年   185篇
  2018年   211篇
  2017年   156篇
  2016年   163篇
  2015年   207篇
  2014年   307篇
  2013年   550篇
  2012年   228篇
  2011年   373篇
  2010年   179篇
  2009年   337篇
  2008年   402篇
  2007年   413篇
  2006年   393篇
  2005年   356篇
  2004年   373篇
  2003年   300篇
  2002年   243篇
  2001年   170篇
  2000年   165篇
  1999年   138篇
  1998年   168篇
  1997年   115篇
  1996年   115篇
  1995年   118篇
  1994年   79篇
  1993年   68篇
  1992年   57篇
  1991年   43篇
  1990年   37篇
  1989年   14篇
  1988年   17篇
  1987年   30篇
  1986年   19篇
  1985年   17篇
  1984年   26篇
  1983年   15篇
  1982年   24篇
  1981年   15篇
  1980年   19篇
  1979年   16篇
  1978年   6篇
  1976年   6篇
  1975年   6篇
  1974年   8篇
排序方式: 共有7288条查询结果,搜索用时 15 毫秒
181.
182.
183.
Three dimeric cassane diterpenoids, caesalpanins A–C, were isolated from the seeds of Caesalpinia sappan L., as well as three known compounds. Their structures were determined via analysis of 1D‐, 2D‐NMR, and HR‐ESI‐MS data. Caesalpanins A and B were the second and third compounds that presented a nitrogen‐containing cassane diterpenoid dimer linked through one ether bond between C‐19 and C‐20′. Caesalpanin B exhibited moderate cytotoxic activity against MCF‐7 cell lines with IC50 value of 29.98 μm . Caesalpanins A and B had weak inhibitory effects against LPS‐induced nitric oxide (NO) production in RAW 264.7 macrophages at 50 μm with inhibitory rate of 36.01 % and 32.93 %, respectively.  相似文献   
184.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
185.
Li[Ni0.9Co0.1]O2 (NC90), Li[Ni0.9Co0.05Mn0.05]O2 (NCM90), and Li[Ni0.9Mn0.1]O2 (NM90) cathodes are synthesized for the development of a Co‐free high‐energy‐density cathode. NM90 maintains better cycling stability than the two Co‐containing cathodes, particularly under harsh cycling conditions (a discharge capacity of 236 mAh g?1 with a capacity retention of 88% when cycled at 4.4 V under 30 °C and 93% retention when cycled at 4.3 V under 60 °C after 100 cycles). The reason for the enhanced stability is mainly the ability of NM90 to absorb the strain associated with the abrupt anisotropic lattice contraction/extraction and to suppress the formation of microcracks, in addition to enhanced chemical stability from the increased presence of stable Mn4+. Although the absence of Co deteriorates the rate capability, this can be overcome as the rate capability of the NM90 approaches that of the NCM90 when cycled at 60 °C. The long‐term cycling stability of NM90 is confirmed in a full cell, demonstrating that it is one of the most promising Co‐free cathodes for high‐energy‐density applications. This study not only provides insight into redefining the role of Mn in a Ni‐rich cathode, it also represents a clear breakthrough in achieving a commercially viable Co‐free Ni‐rich layered cathode.  相似文献   
186.
187.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   
188.
一氧化氮对豆科植物结瘤及固氮的影响机制   总被引:1,自引:0,他引:1  
豆科植物-根瘤菌共生过程受双方基因复杂且精细的调控, 能够产生特异的根瘤结构并可将大气中的惰性氮气(N2)转化为可被植物直接利用的氨态氮。结瘤与固氮受多种因素影响, 其中, 一氧化氮(NO)作为一种自由基反应性气体信号分子, 可参与调节植物的许多生长发育过程, 如植物的呼吸、光形态建成、种子萌发、组织和器官发育、衰老以及响应各种生物及非生物胁迫。在豆科植物中, NO不仅影响寄主与菌共生关系的建立, 还参与调控根瘤菌对氮气的固定并提高植株氮素营养利用效率。该文主要从豆科植物及共生菌内NO的产生、降解及其对结瘤、共生固氮的影响和对环境胁迫的响应, 阐述了NO调控豆科植物共生体系中根瘤形成和共生固氮过程的作用机制, 展望了NO信号分子在豆科植物共生固氮体系中的研究前景。  相似文献   
189.
ABSTRACT

This study was conducted to assess the effect of feeding high-surface ZnO instead of common ZnO on the performance, rumen fermentation, blood minerals, leukocytes and antioxidant capacity of pre- and post-weaning calves. Thirty male suckling Holstein calves were allotted to one of three experimental groups (10 replicates) in a completely randomised design. Calves received: (1) a low Zn diet without Zn supplementation (control diet), (2) a high Zn diet containing 50 mg supplementary Zn/kg dry matter (DM) as common ZnO or (3) a high Zn diet containing 50 mg supplementary Zn/kg DM as high-surface ZnO (nano-ZnO). The control diet contained a native Zn content of 35.5, 34.7 or 33.7 mg/kg DM for the age periods of 7 to 30, 31 to 70 and 71 to 100 d, respectively. Supplementation of the diet with Zn did not change the dry matter intake (DMI) of calves during d 7 to 30 but increased the ADG in this period (p < 0.05). During age periods of 31 to 70 and 71 to 100 d, DMI and ADG of the Zn supplemented calves were higher (p < 0.05) than the control animals. The nutrient digestibility and the concentration of rumen volatile fatty acids were positively affected (p < 0.05) and the rumen ammonia-N concentration decreased (p < 0.05) by dietary Zn supplementation. Furthermore, the incidence of diarrhoea and pneumonia was lower in calves receiving the Zn supplemented diets. Irrespective of ZnO source, the blood total antioxidant capacity, leukocyte and haematocrit levels significantly increased (p < 0.05) with the ZnO supplemented diets. The post-weaning DMI, nutrient digestibility and blood haematocrit levels were higher in calves receiving high-surface ZnO, compared to those supplemented with common ZnO. With inclusion of the Zn sources in pre- and post-weaning diets, the blood Zn concentration increased (p < 0.05), but the blood Cu, Fe, Ca, P and Mg levels remained unchanged. Regardless of source, dietary supplementation of young calves with ZnO improved the performance and decreased rumen ammonia-N and the incidence of diseases. Moreover, high-surface ZnO had advantages over common ZnO in increasing the post-weaning feed intake, digestibility and blood Zn concentration.  相似文献   
190.
In the current study, a composite material was constructed using β-cyclodextrin/graphene oxide (β-CD-GO) and was then applied for the purpose of eliminating cadmium (Cd) from aqueous solution. The synthesized β-CD-GO composite material was then subjected to characterization using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The batch study was conducted for the purpose of removing Cd(II). The results of the study revealed that the β-CD-GO composite material demonstrated a high adsorption capacity of 196 mg/g of Cd(II) at pH 7.0. Further, the adsorption of Cd(II) on the β-CD-GO followed pseudo second-order kinetics and equilibrium adsorption data, which fitted well to the Langmuir isotherm model. The evaluation of the toxicity of the synthesized β-CD-GO composite material was done by the examination of the cervical cancer (HeLa) cell lines. Increasing concentration of β-CD-GO composite material (50 μg to 200 μg) leads to a decline in the percentage of cell viability as from 74 % to 25 %. This study has suggested that the β-CD-GO could play an efficient and beneficial source of the adsorbent for the purpose of eliminating Cd(II) from aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号