首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6628篇
  免费   412篇
  国内免费   233篇
  2024年   7篇
  2023年   49篇
  2022年   71篇
  2021年   88篇
  2020年   162篇
  2019年   185篇
  2018年   211篇
  2017年   156篇
  2016年   163篇
  2015年   207篇
  2014年   307篇
  2013年   550篇
  2012年   228篇
  2011年   373篇
  2010年   179篇
  2009年   337篇
  2008年   402篇
  2007年   413篇
  2006年   393篇
  2005年   356篇
  2004年   373篇
  2003年   300篇
  2002年   243篇
  2001年   170篇
  2000年   165篇
  1999年   138篇
  1998年   168篇
  1997年   115篇
  1996年   115篇
  1995年   118篇
  1994年   79篇
  1993年   68篇
  1992年   57篇
  1991年   43篇
  1990年   37篇
  1989年   14篇
  1988年   17篇
  1987年   30篇
  1986年   19篇
  1985年   17篇
  1984年   26篇
  1983年   15篇
  1982年   24篇
  1981年   15篇
  1980年   19篇
  1979年   16篇
  1978年   6篇
  1976年   6篇
  1975年   6篇
  1974年   8篇
排序方式: 共有7273条查询结果,搜索用时 296 毫秒
111.
Novel, non-arginine based compounds have been identified as potent inhibitors of nitric oxide synthase (NOS). Members of the isothiourea and mercapto-alkylguanidine classes have generated much interest, as some members of these classes show selectivity towards the inducible isoform of NOS (iNOS), which plays a role in inflammation and shock. Here we compared the effect of a number of these compounds as well as L-arginine based NOS inhibitor reference compounds on macrophage-derived and liver arginase and macrophage iNOS activities. From the nonarginine based NOS inhibitors studied only S-aminoethyl-isothiourea (AETU) caused a slight inhibition of arginase activity. This inhibition was kinetically competitive and due to the rearrangement of AETU to mercapto-ethylguanidine (MEG). The weak inhibitory effect of non-arginine based iNOS inhibitors on arginase activity further supports the view that such compounds may be of practical use for inhibition of NO production in cells simultaneously expressing iNOS and arginase.  相似文献   
112.
113.
NADPH-diaphorase (NADPH-D) activity and immunoreactivity for neural and endothelial nitric oxide synthase (nNOS and eNOS, respectively) were used to investigate nitric oxide (NO) regulation of penile vasculature. Both the histochemical and immunohistochemical techniques for NOS showed that all smooth muscles regions of the penis (dorsal penile artery and vein, deep penile vessels, and cavernosal muscles) were richly innervated. The endothelium of penile arteries, deep dorsal penile vein, and select veins in the crura and shaft were also stained for NADPH-D and eNOS. However, the endothelium of cavernous sinuses was unstained by both techniques. Fewer fibers were seen in the glans penis, those present being associated with small blood vessels and large nerve bundles near the trabecular walls. All penile neurons in the pelvic plexus, located by retrograde transport of a dye placed in the corpora cavernosa penis, were stained by the NADPH-D method. Essentially similar results were obtained with an antibody to nNOS. These data suggest that penile parasympathetic neurons comprise a uniform population, as all seem capable of forming nitric oxide. However, in contrast to the endothelium of penile vessels, the endothelium lining the cavernosal spaces may not be capable of nitric oxide synthesis.  相似文献   
114.
This is the first report on the ultrastructural distribution of nitric oxide synthase and endothelin immunoreactivities in the coronary and pulmonary arteries of newborn Wistar rats. The distribution of nitric oxide synthase and endothelin was investigated using pre-embedding peroxidase-antiperoxidase immunocytochemistry. In both arteries examined, positive labelling for nitric oxide synthase was localized both in the endothelium and smooth muscle, whereas positive labelling for endothelin was localized in the endothelium exclusively. In the coronary artery, approximately 80% and 55% of the endothelial cells examined were positive for nitric oxide synthase and endothelin, respectively, whereas in the pulmonary artery, 77% and 60% of the endothelial cells were positive for nitric oxide synthase and endothelin, respectively. These findings indicate that nitric oxide synthase and endothelin are colocalized in some of the endothelial cells of the newborn rat. In the endothelium, nitric oxide synthase and endothelin immunoreactivities were distributed throughout the cell cytoplasm and in association with the membranes of intracellular organelles. In smooth muscle, a relationship of nitric oxide synthase immunoreactivity to endoplasmic reticulum was observed in the pulmonary artery. In summary, in the newborn rat, endothelial cells of the coronary and pulmonary artery are rich in nitric oxide synthase (neuronal isoform) and endothelin, and it is suggested therefore that they may be substantially involved in vasomotor control of the cardiac and pulmonary circulation during early stages of postnatal development.  相似文献   
115.
We examined the effects of endogenous basic proteins rich in the amino acidL-arginine on neuronal NO synthase activity by monitoring cyclic GMP formation in intact neuron-like neuroblastoma N1E-115 cells. Histone, protamine and myelin basic protein significantly stimulated cyclic GMP formation, both in a time- and concentration-dependent manner. These effects were blocked by hemoglobin and NO synthase inhibitors. Removal of the extracellular/intracellular Ca2+ gradient by a Ca2+ chelator completely abolished the cyclic GMP responses elicited by histone and protamine, suggesting that influex of extracellular Ca2+ might be involved in their activation of NO synthase. The effects of myelin basic protein on cyclic GMP formation, however, appeared to be due to Ca2+ release from intracellular stores. In cytosolic preparations of rat cerebellum, these basic proteins inhibited the metabolism ofL-arginine intoL-citrulline by NO synthase. We conclude from our findings that endogenous basic proteins might be involved in the regulation of neuronal NO synthase activity. Their effects on the enzyme could be either stimulatory or inhibitory, depending on whether the basic proteins exert their effects extracellularly or intracellularly, respectively.  相似文献   
116.
Despite evidence which supports a neurotransmitter-like role for nitric oxide (NO) in the CNS, relatively little is known regarding mechanisms which control NO formation within CNS neurons. In this study, isolated nerve endings (synaptosomes) from rat cerebral cortex were used to ascertain whether NO can autoregulate its own formation within neurons through feedback inhibition of the NO biosynthetic enzyme nitric oxide synthase (NOS). Under the conditions described here, N-nitro-l-arginine methyl ester-sensitive conversion ofl-[3H]arginine intol-[3H]citrulline (i.e., NOS activity) was found to be highly calcium-dependent and strongly inhibited (up to 60 percent) by NO donors, including sodium nitroprusside, hydroxylamine and nitroglycerin. The inhibitory effect of sodium nitroprusside was concentration-dependent (IC50100 M) and prevented by the NO scavenger oxyhemoglobin.l-Citrulline, the other major end-product from NOS, had no apparent effect on synaptosomal NOS activity. Taken together, these results indicate that neuronal NOS can be inhibited by NO released from exogenous donors and, therefore, may be subject to end-product feedback inhibition by NO that is formed locally within neurons or released from proximal cells.  相似文献   
117.
万梅  于占久 《生理学报》1995,47(3):231-237
血管内皮产生的内皮衍生舒张因子(endothelium-derived relaxing factor,EDRF)即一氧化氮(nitric oxide,NO)本工作分别在大鼠Langendorff离体心脏灌流模型和培养的大鼠心肌细胞上观察了NO、NO的前体物质L-精氨酸(L-Arg)、NO的前体物质L-精氨酸(L-Arg)、NO的合成阻断剂L-硝基精氨酸(L-NNA)对心肌缺血(缺氧)再灌注(复氧  相似文献   
118.
The addition of manganese oxides to iron-limited medium promoted the formation of the pyoverdin siderophore azotobactin by Azotobacter vinelandii. When active-MnO2 was used, there was greatly decreased iron uptake into the cells, hyperproduction of azotobactin and the abiotic, chemical destruction or adsorbtion of the catechol siderophores azotochelin and aminochelin by this strong oxidizing agent. Although the iron content of the cells was the same as iron-limited cells, the growth of cells in medium with active-MnO2 was increased 1.5- to 2.5-fold over iron-limited controls. This growth promotion was not caused by iron contaminating the oxide or by manganese solubilized from the oxide. Soluble 0.05–4 mm Mn2+ inhibited the growth of iron-limited cells and had a minimal effect on iron uptake, but caused hyperproduction of azotobactin. This later effect was caused by the inhibition of soluble ferric reductase, in a manner identical to that previously observed for Zn2+. These results suggest that active-MnO2 may interfere with a surface-localized iron uptake site, possibly another ferric reductase. The reason for the growth promotion by active-MnO2 remains unknown, but is most likely related to decreased oxygen toxicity.  相似文献   
119.
Radical-pair decay kinetics and molecular triplet quantum yields at various magnetic fields are reported for quinone-depleted reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26. The radical-pair decay is observed by picosecond absorption spectroscopy to be a single exponential to within the experimental uncertainty at all fields. The decay time increases from 13 ns at zero field to 17 ns at 1 kG, and decreases to 9 ns at 50 kG. The orientation averaged quantum yield of formation of the molecular triplet of the primary electron donor, 3P, drops to 47% of its zero-field value at 1 kG and rises to 126% at 50 kG. Combined analysis of these data gives a singlet radical-pair decay rate constant of 5 · 107s?1, a lower limit for the triplet radical-pair decay rate constant of 1 · 108s?1 and a lower limit for the quantum yield of radical-pair decay by the triplet channel of 38% at zero field. The upper limit of the quantum yield of 3P formation at zero field is measured to be 32%. In order to explain this apparent discrepancy, decay of the radical pair by the triplet channel must lead to some rapid ground state formation as well as some 3P formation. It is proposed that the triplet radical pair decays to a triplet charge-transfer state which is strongly coupled to the ground state by spin-orbit interactions. Several possibilities for this charge-transfer state are discussed.  相似文献   
120.
Purification of bacterial L-methionine gamma-lyase   总被引:1,自引:0,他引:1  
A chromatographic procedure using sequential ion-exchange columns is described for separating choline, trimethylamine, trimethylamine oxide, and betaine extracted from marine fish tissues; added exogenous carnitine can also be separated by the system. Choline with its positive charge binds to the AG 50W-X8 (Na+, pH 9) column. The column is first eluted with 0.1 N NaOH to collect trimethylamine, trimethylamine oxide, and betaine; choline is then eluted with 0.5 N NaOH. The amines collected with 0.1 N NaOH are subsequently separated using an AG 50W-X8 (H+, pH 4) column eluted with a linear 0-1 M NaC1 gradient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号