首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6924篇
  免费   348篇
  国内免费   198篇
  2024年   4篇
  2023年   56篇
  2022年   86篇
  2021年   106篇
  2020年   127篇
  2019年   151篇
  2018年   167篇
  2017年   158篇
  2016年   132篇
  2015年   188篇
  2014年   292篇
  2013年   424篇
  2012年   196篇
  2011年   263篇
  2010年   222篇
  2009年   252篇
  2008年   339篇
  2007年   372篇
  2006年   326篇
  2005年   284篇
  2004年   293篇
  2003年   269篇
  2002年   255篇
  2001年   183篇
  2000年   186篇
  1999年   189篇
  1998年   184篇
  1997年   219篇
  1996年   149篇
  1995年   143篇
  1994年   126篇
  1993年   125篇
  1992年   133篇
  1991年   100篇
  1990年   107篇
  1989年   98篇
  1988年   82篇
  1987年   71篇
  1986年   60篇
  1985年   66篇
  1984年   72篇
  1983年   41篇
  1982年   53篇
  1981年   50篇
  1980年   28篇
  1979年   16篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1973年   4篇
排序方式: 共有7470条查询结果,搜索用时 109 毫秒
61.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Na o + /H i + and Na i + /H o + exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na o + /H i + exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.  相似文献   
62.
Summary Injection of depolarizing current into vegetative cells of the water moldBlastocladiella emersonii elicits a regenerative response that has the electrical characteristics of an action potential. Once they have been taken past a threshold of about –40 mV, cells abruptly depolarize to +20 mV or above; after an interval ranging from several hundred milliseconds to a few seconds, the cells spontaneously return to their resting potential near –100 mV. When the action potential was analyzed with voltage-clamp recording, it proved to be biphasic. The initial phase reflects an influx of calcium ions through voltage-sensitive channels that also carry Sr2+ ions. The delayed, and more extended, phase of inward current results from the efflux of chloride and other anions. The anion channels are broadly selective, passing chloride, nitrate, phosphate, acetate, succinate and even PIPES. The anion channels open in response to the entry of calcium ions, but do not recognize Sr2+. Calcium channels, anion channels and calcium-specific receptors that link the two channels appear to form an ensemble whose physiological function is not known. Action potentials rarely occur spontaneously but can be elicited by osmotic downshock, suggesting that the ion channels may be involved in the regulation of turgor.  相似文献   
63.
Summary A Ca and potential-dependent K channel of large unit conductance was detected in the apical membrane of JTC-12.P3 cells, a continuous epithelial cell line of renal origin. The open probability of the channel is dependent on membrane potential and cytoplasmic-free Ca concentration. At cell-free configuration of the membrane patch, the open probability shows a bell-shaped behavior as function of membrane potential, which decreases at larger depolarization. With increasing Ca concentration, the width of the bell-shaped curve increases and the maximum shifts into the hyperpolarizing direction. For the first time the kinetics of this channel was analyzed under cell-attached conditions. In this case the kinetics could sufficiently be described by a simple open-closed behavior. The channel has an extremely small open probability at resting potential, which increases exponentially with depolarization. The low probability induces an uncertainty about the actual number of channels in the membrane patch. The number of channels is estimated by kinetic analysis. It is discussed that this K channel is essential for the repolarization of the membrane potential during electrogenic sodium-solute cotransport across the apical membrane.  相似文献   
64.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase.  相似文献   
65.
Abstract Calcium-activated neutral proteinase (CANP) was purified 2,625-fold from postmortem human cerebral cortex by a procedure involving chromatography on diethylaminoethyl (DEAE)-cellulose, phenyl-Sepharose, Ultrogel AcA-44, and DEAE-Biogel A. The major active form of CANP exhibited a molecular weight of 94–100 kilodaltons (Kd) by gel filtration on Sephacryl 300 and consisted of 78-Kd and 27-Kd subunits. Two-dimensional gel electrophoresis resolved the small subunit into two molecular species with different isoelectric points. CANP degraded most human cytoskeletal proteins but was particularly active toward fodrin and the neurofilament protein subunits (145 Kd > 200 Kd > 70 Kd). The enzyme required 175 μMCa2+ for half-maximal activation and 2 mM Ca2+ for optimal activity toward [methl-14C]azocasein. Other divalent metal ions were poor activators of the enzyme, and some, including copper, lead, and zinc, strongly inhibited the enzyme. Aluminum, a neurotoxic ion that induces neurofilament accumulations in mammalian brain, inhibited the enzyme 47% at 1 mM and 100% at 5 mM A second CANP form lacking the 27-Kd subunit was partially resolved from the 100-Kd heterodimer during DEAE-Biogel A chromatography. The 78-Kd monomer exhibited the same specific activity, calcium ion requirement, pH optimum, and specificity for cytoskeletal proteins as the 100-Kd heterodimer, suggesting that the 27-Kd subunit is not essential for the major catalytic properties of the enzyme. The rapid autolysis of the 27-Kd subunit to a 18-Kd intermediate when CANP is exposed to calcium may explain differences between our results and previous reports, which describe brain mCANP in other species as a 76-80-Kd monomer or a heterodimer containing 76-80-Kd and 17-20-Kd subunits. The similarity of the 100-Kd human brain CANP to CANPs in nonneural tissues indicates that the heterodimeric form is relatively conserved among various tissues and species.  相似文献   
66.
The efflux of K+ and Na+ from sea urchin eggs during Ca2+ ionophore A23187-induced parthenogenesis was studied in a K+ and Na+-free artificial seawater using extracellular ion-specific electrodes. We have probed this model system with monovalent cation-specific ionophores to determine if they affect K+ efflux in the unfertilized egg and whether any changes in ionophore sensitivity are observed during egg activation. In 500 mM choline chloride, 10 mM CaCl2, 50 mM MgCl2, 10 mM Tris-Cl pH 8.0, A23187 induced a rapid efflux of K+ and Na+ from the eggs after a short lag time (10–15 seconds). After the burst, the rate of K+ efflux remained higher than the pre-activation rate, but was lower than during the burst phase, while the rate of Na+ efflux became nearly zero. Monovalent cation-specific ionophores (valinomycin, gramicidin and nigericin) had no effect on K+ efflux from the unfertilized eggs in our model system. However, once the egg was activated by A23187, each of the above ionophores caused a prolongation of the burst phase for many minutes. These results show that the unfertilized egg plasma membrane (using our artificial conditions) is not susceptible to the monovalent cation-specific antibiotics and suggest that either the inserted cortical granule membrane or the developing fertilization envelope interacts with these ionophores to cause the change in rate-limiting step for K+ efflux observed egg activation.  相似文献   
67.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   
68.
Summary The permeability of the Na channel of squid giant axon to organic cations and small nonelectrolytes was studied. The compounds tested were guanidinium, formamidinium, and14C-labeled urea, formamide, thiourea, and acetone. Permeability was calculated from measurements of reversal potential and influx on internally perfused, voltage clamped squid axons. The project had two objectives: (1) to determine whether different methods of measuring the permeability of organic cations yield similar values and (2) to see whether neutral analogs of the organic cations can permeate the Na channel. Our results show that the permeability ratio of sodium to a test ion depends upon the ionic composition of the solution used. This finding is consistent with the view put forward previously that the Na channel can contain more than one ion at a time. In addition, we found that the uncharged analogs of permeant cations are not measurably permeant through the Na channel, but instead probably pass through the lipid bilayer.  相似文献   
69.
Summary Lens fibers are coupled by communicating junctions, clusters of cell-to-cell channels composed of a 28-kD intrinsic membrane protein (MIP26). Evidence suggests that these and other cell-to-cell channels may close as a result of protein conformational change induced by activated calmodulin. To test the validity of this hypothesis, we have measured the intrinsic fluorescence emission and far-ultraviolet circular dichroism of the isolated components MIP26, calmodulin, and the MIP26-calmodulin complex, both in the absence and presence of Ca++, an uncoupling agent. MIP26 shows no change in either, fluorescence emission (primarily tryptophan and a measure of aromatic constitutivity) or in its circular dichroism spectrum. Calmodulin exhibits a 32% increase in fluorescence emission intensity with constant emission wavelength, entirely tyrosine, and a 44% increase in -helicity, changes previously described. The MIP26-calmodulin complex, on the other hand, displays fluorescence emission and circular dichroism spectra which are slightly different from the sum of the two single components, but shows marked differences in both spectra upon Ca++ addition. This indicates a change in conformation in one or both of the two components. Spectral changes include a 5-nm blue-shift, a 50% increase in tyrosine fluorescene emission, a 25% decrease in tryptophan fluorescence emission, and a 5% increase in the -helicity of the complex. These changes also occur about an isosbestic point and are fully reversible. These data provide additional evidence that activated calmodulin may modulate gating of cell-to-cell channels by affecting channel protein.  相似文献   
70.
Summary Unitary K+ currents in single cells isolated from ventricular muscle of newborn rat hearts were measured in response to different potentials and [K] o . TheI/V curves were linear for potentials more negative than the zero-current voltage: especially in high [K] o (150nm KCl), no clear outward currents could be detected indicating a drastic rectification in the inward direction. The channel is mainly selective to K+ but Na+ ions are also carried (P Na/P K=0.056). The channel conductance is proportional to the square root of [K] o but Na+ ions seem to have a facilitatory effect on K, the single-channel conductance. The channel activity, measured asP o, i.e. the probability to find the channel in open state, decreased as the membrane was hyperpolarized. This behavior was tentatively explained by an inactivation process as the membrane becomes more negative. The rate constants of the transitions between the different states were calculated according to a C–O–C model. A control of the gating process by permeant ion K+ was postulated, based on the increase of one of the rate constants from the closed to the open state with [K] o . Finally, the macroscopicI/V curves calculated fromP o and i, the unit current, were found to be characteristic of a ion-blocked inward rectifier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号