首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6924篇
  免费   348篇
  国内免费   198篇
  2024年   4篇
  2023年   56篇
  2022年   86篇
  2021年   106篇
  2020年   127篇
  2019年   151篇
  2018年   167篇
  2017年   158篇
  2016年   132篇
  2015年   188篇
  2014年   292篇
  2013年   424篇
  2012年   196篇
  2011年   263篇
  2010年   222篇
  2009年   252篇
  2008年   339篇
  2007年   372篇
  2006年   326篇
  2005年   284篇
  2004年   293篇
  2003年   269篇
  2002年   255篇
  2001年   183篇
  2000年   186篇
  1999年   189篇
  1998年   184篇
  1997年   219篇
  1996年   149篇
  1995年   143篇
  1994年   126篇
  1993年   125篇
  1992年   133篇
  1991年   100篇
  1990年   107篇
  1989年   98篇
  1988年   82篇
  1987年   71篇
  1986年   60篇
  1985年   66篇
  1984年   72篇
  1983年   41篇
  1982年   53篇
  1981年   50篇
  1980年   28篇
  1979年   16篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1973年   4篇
排序方式: 共有7470条查询结果,搜索用时 936 毫秒
161.
The properties of one ATP-inhibited and one Ca2+-dependent K+ channel were investigated by the patch-clamp technique in the soma membrane of leech Retzius neurons in primary culture. Both channels rectify at negative potentials. The ATP-inhibited K+ channel with a mean conductance of 112 pS is reversibly blocked by ATP (K i = 100 m), TEA (K i =0.8 mm) and 10 mm Ba2+ and irreversibly blocked by 10 nm glibenclamide and 10 m tolbutamide. It is Ca2+ and voltage independent. Its open state probability (P o) decreases significantly when the pH at the cytoplasmic face of inside-out patches is altered from physiological to acid pH values. The Ca2+-dependent K+ channel with a mean conductance of 114 pS shows a bell-shaped Ca2+ dependence of P o with a maximum at pCa 7–8 at the cytoplasmic face of the membrane. The P o is voltage independent at the physiologically relevant V range. Ba2+ (10 mm) reduces the single channel amplitude by around 25% (ATP, TEA, glibenclamide, tolbutamide, and Ba2+ were applied to the cytoplasmic face of the membrane).We conclude that the ATP-dependent K+ channel may play a role in maintaining the membrane potential constant—independently from the energy state of the cell. The Ca2+-dependent K+ channel may play a role in generating the resting membrane potential of leech Retzius neurons as it shows maximum activity at the physiological intracellular Ca2+ concentration.This study was supported by the Deutsche Forschungsgemeinschaft (W.-R. Schlue) and by a fellowship of the Konrad-Adenauer-Stiftung (G. Frey). We thank Dr. Draeger (Hoechst AG) for the gift of glibenclamide. The data are part of a future Ph.D. thesis of G. Frey.  相似文献   
162.
Trypsinized human skin fibroblasts in suspension perform regulatory volume decrease (RVD) after cell swelling in hypotonic medium. During RVD, 36Cl efflux is dramatically increased and the cell membrane is depolarized, indicating the activation of Cl channels. This activation of Cl channels depends on extracellular as well as on intracellular Ca2+. The swelling-induced Cl efflux and the RVD response are inhibited by the 5-lipoxygenase inhibitor ETH 615-139. Finally, following hypotonic treatment, cellular pH decreases. The pH decrease does not involve the Cl/HCO 3 exchange because it is independent of the external Cl concentration.T. Mastrocola was recipient of a scientific fellowship from the Italian Consiglio Nazionale delle Ricerche (C.N.R.). This work was supported by Progetto Finalizzato Ingegneria Genetica, C.N.R., Roma, and by the Danish Natural Research Council.  相似文献   
163.
164.
165.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   
166.
The activation by abscisic acid (ABA) of current through outward-rectifying K+ channels and its dependence on cytoplasmic pH (pHi) was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled and H+-selective microelectrodes to record membrane potentials and pHi during exposures to ABA and the weak acid butyrate. Potassium channel currents were monitored under voltage clamp and, in some experiments, guard cells were loaded with pH buffers by iontophoresis to suppress changes in pHi. Following impalements, stable pHi values ranged between 7.53 and 7.81 (7.67±0.04, n = 17). On adding 20 M ABA, pHi rose over periods of 5–8 min to values 0.27±0.03 pH units above the pHi before ABA addition, and declined slowly thereafter. Concurrent voltage-clamp measurements showed a parallel rise in the outward-rectifying K+ channel current (IK, out) and, once evoked, both pHi and IK, out responses were unaffected by ABA washout. Acid loads, imposed with external butyrate, abolished the ABA-evoked rise in IK, out. Butyrate concentrations of 10 and 30 mM (pH0 6.1) caused pHi to fall to values near 7.0 and below, both before and after adding ABA, consistent with a cytoplasmic buffer capacity of 128±12 mM per pH unit (n = 10) near neutrality. Butyrate washout was characterised by an appreciable alkaline overshoot in pHi and concomitant swell in the steady-state conductance of IK, out. The rise in pHi and iK, out in ABA were also virtually eliminated when guard cells were first loaded with pH buffers to raise the cytoplasmic buffer capacity four- to sixfold; however, buffer loading was without appreciable effect on the ABA-evoked inactivation of a second, inward-rectifying class of K+ channels (IK, in). The pHi dependence of IK, out was consistent with a cooperative binding of at least 2H+ (apparent pKa = 8.3) to achieve a voltage-independent block of the channel. These results establish a causal link previously implicated between cytoplasmic alkalinisation and the activation of IK, out in ABA and, thus, affirm a role for H+ in signalling and transport control in plants distinct from its function as a substrate in H+-coupled transport. Additional evidence implicates a coordinate control of IK, in by cytoplasmic-free [Ca2+] and pHi.Abbreviations ABA abscisic acid - [Ca2+]i cytoplasmic free [Ca2+]i - EK K+ equilibrium potential - IK, out, IK, in outward-, inward-rectifying K+ channel (current) - I-V current-voltage (relation) - Mes 2-(N-morpholino)ethanesulfonic acid - pHi cytoplasmic pH - Tes 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-amino}ethanesulfonic acid - Vm membrane potential We are grateful to G. Thiel (Pflanzenphysiologisches Institut, Universität Göttingen, Germany) for helpful discussions. This work was possible with equipment grants-in-aid from the Gatsby Charitable Foundation, the Royal Society and the University of London Central Research Fund. F.A. holds a Sainsbury Studentship.  相似文献   
167.
Legumin, which amounts to approximately 55% of the seed protein in field beans (Vicia faba L. var. minor), is a representative of the 12S storage globulin family. The 12S storage globulins are hexameric holoprotein molecules composed of different types of polymorphic subunits encoded by a multigene family. Type-A legumin subunits contain methionine whereas type-B are methionine-free subunits. Sequencing of two different type A-specific cDNAs, as well as an FPLC/HPLC-based improvement of subunit fractionation and peptide mapping with subsequent partial amino-acid sequencing, permit the assignment of some of the polymorphic legumin subunits to members of the multigene family. Two different type A subunits (A1 and A2) correspond to the two different cDNA clones pVfLa129 (A2) and 165 (A1), but microheterogeneity in the amino-acid sequences indicates that polymorphic variants of both representatives of this type may exist. Two groups of published type B-specific gene sequences (LeB7, and LeB2, LeB4, LeB6, respectively) are represented by two polymorphic subunit fractions (B3I, B3II, and B4I, B4II). A seventh clone, LeB3, encodes one of the large legumin subunits that is only a minor component of the legumin seed protein complex.  相似文献   
168.
To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures.  相似文献   
169.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   
170.
Structure–interaction relationships, stereoselectivity, and solubility enhancement in inclusion compexation of β-cyclodextrins (CDs) with some racemic and enantiomerically pure 1,4-dihydropyridine derivatives (DHPs) were investigated. 1:1 and 1:2 (mole ratio) complexes were prepared and characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), MS-FAB spectrometry, 1H-NMR spectroscopy, water and phase solubility. The solubility studies have revealed different complexation equilibria for optically pure DHP enantiomers, and corresponding racemic mixtures in water solutions. By means of 1H-NMR chemical shift measurements, the inclusion of aromatic fragments of racemic and enantiomerically pure DHP molecules within the cavities of different CDs was elucidated. Considerable stereoselectivity in complexation interactions was observed. The results indicate the potential use of cyclodextrins as chiral selectors for enantiomeric resolution of 1,4-DHP calcium antagonists. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号