首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1600篇
  免费   127篇
  国内免费   62篇
  2024年   1篇
  2023年   13篇
  2022年   16篇
  2021年   29篇
  2020年   37篇
  2019年   51篇
  2018年   52篇
  2017年   47篇
  2016年   26篇
  2015年   40篇
  2014年   36篇
  2013年   71篇
  2012年   54篇
  2011年   57篇
  2010年   43篇
  2009年   30篇
  2008年   67篇
  2007年   66篇
  2006年   53篇
  2005年   44篇
  2004年   48篇
  2003年   45篇
  2002年   55篇
  2001年   55篇
  2000年   41篇
  1999年   47篇
  1998年   48篇
  1997年   69篇
  1996年   40篇
  1995年   45篇
  1994年   36篇
  1993年   25篇
  1992年   44篇
  1991年   28篇
  1990年   34篇
  1989年   32篇
  1988年   29篇
  1987年   25篇
  1986年   35篇
  1985年   20篇
  1984年   38篇
  1983年   21篇
  1982年   33篇
  1981年   33篇
  1980年   14篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
排序方式: 共有1789条查询结果,搜索用时 15 毫秒
41.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   
42.
Claudia Kluge  Peter Dimroth   《FEBS letters》1994,340(3):245-248
Subunit c of the F1F0-ATPase from Propionigenium modestum was extracted from the particulate cell fraction with chloroform/methanol. The protein was further purified by carboxymethyl cellulose chromatography and anion exchange HPLC in the organic solvent. SDS-PAGE of the purified protein indicated a single stained protein band migrating as expected for the c-subunit. Incubation of isolated subunit c in chlorform/methanol or aqueous buffer containing dodecyl-β- -maltoside with [14C]dicyclohexylcarbodiimide (DCCD) resulted in the incorporation of radioactivity into the protein. The rate of this reaction depended on the external pH; it was significantly faster in the more acidic than in the alkaline pH range. In the presence of Na+ subunit c was partially protected from labeling with [14C]DCCD at pH 6.1 and at pH 7.5, whereas no protection was evident at pH 5.5. At pH 7.5, the rate of subunit c labeling by [14C]DCCD in the presence of 20 mM NaCl was about 50% lower than in the absence of Na+ ions. The isolated c-subunit therefore apparently retains in part the Na+ binding site which, when occupied, diminishes the reactivity of the protein towards DCCD.  相似文献   
43.
Abstract: Injection of large doses of ammonia into rats leads to depletion of brain ATP. However, the molecular mechanism leading to ATP depletion is not clear. The aim of the present work was to assess whether ammonium-induced depletion of ATP is mediated by activation of the NMDA receptor. It is shown that injection of MK-801, an antagonist of the NMDA receptor, prevented ammonia-induced ATP depletion but did not prevent changes in glutamine, glutamate, glycogen, glucose, and ketone bodies. Ammonia injection increased Na+,K+-ATPase activity by 76%. This increase was also prevented by previous injection of MK-801. The molecular mechanism leading to activation of the ATPase was further studied. Na+,K+-ATPase activity in samples from ammonia-injected rats was normalized by "in vitro" incubation with phorbol 12-myristate 13-acetate, an activator of protein kinase C. The results obtained suggest that ammonia-induced ATP depletion is mediated by activation of the NMDA receptor, which results in decreased protein kinase C-mediated phosphorylation of Na+,K+-ATPase and, therefore, increased activity of the ATPase and increased consumption of ATP.  相似文献   
44.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   
45.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   
46.
Phlorizin is a reversible inhibitor of the renal and small intestinal Na+/D-glucose cotransporter. In an attempt to purify the Na+/D-glucose cotransporter from a pig kidney brush border membrane fraction, we used an Affi-Gel affinity chromatography column to which 3-aminophlorizin had been coupled. A protein, composed according to crosslinking experiments of at least 3 subunits of molecular weight 60 kDa, was found to bind specifically to the phlorizin column. This protein was subsequently identified as catalase by sequence homology of three of its tryptic fragments to the sequence of several mammalian catalases as well as by its enzymatic activity. Although bovine liver catalase was bound tightly to the affinity matrix, phlorizin had no effect on the ability of the enzyme to degrade H2O2. In contrast, the Aspergillus niger and Neurospora crassa catalases did not bind to the phlorizin column. This difference may be related to the fact that mammalian catalases, but not the fungal catalases, contain an NADPH binding site with a yet unknown function. Interestingly, bovine liver catalase could be eluted with 50 microM NADPH from phlorizin columns. Irradiation in the presence of [3H]4-azidophlorizin allowed photolabeling of bovine liver catalase, which was prevented by the presence of 10 microM NADPH. After digestion of photolabeled catalase with chymotrypsin, a radioactive peptide was detected that was absent in catalase protected with NADPH. Docking simulations suggested that phlorizin can bind to the NADPH binding site with high affinity.  相似文献   
47.
Ca,phospholipid-dependent (PKC) andcAMP-dependent (PKA) protein kinases phosphorylate the -subunit of the Na,K-ATPase from duck salt gland with the incorporation of 0.3 and 0.5 mol32P/mol of -subunit, respectively. PKA (in contrast to PKC) phosphorylates the -subunit only in the presence of detergents. Limited tryptic digestion of the Na,K-ATPase phosphorylated by PKC demonstrates that32P is incorporated into the N-terminal 41-kDa fragment of the -subunit. Selective chymotrypsin cleavage of phosphorylated enzyme yields a 35-kDa radioactive fragment derived from the central region of the -subunit molecule. These findings suggest that PKC phosphorylates the -subunit of the Na,K-ATPase within the region restricted by C3 and T1 cleavage sites.  相似文献   
48.
49.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   
50.
Productivity of outdoor algal cultures in unstable weather conditions   总被引:2,自引:0,他引:2  
In the outdoor cyclic fed batch cultures of Chlorella pyrenoidosa, some typical growth kinetics patterns in unstable weather conditions were observed. On cloudy days, the biomass output rate (R) was low, but the bioenergetic growth yield (Y) was generally high. In the cloudy morning-sunny afternoon condition, the values of Y were low, especially in the afternoon. In the sunny morning-cloudy afternoon condition, both R and Y were high. A few very high short-term Y values were measured during the cloudy the cloudy afternoon. (c) 1993 Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号