首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6248篇
  免费   469篇
  国内免费   257篇
  6974篇
  2024年   20篇
  2023年   93篇
  2022年   120篇
  2021年   188篇
  2020年   219篇
  2019年   336篇
  2018年   284篇
  2017年   184篇
  2016年   155篇
  2015年   175篇
  2014年   366篇
  2013年   445篇
  2012年   267篇
  2011年   368篇
  2010年   246篇
  2009年   211篇
  2008年   253篇
  2007年   285篇
  2006年   224篇
  2005年   194篇
  2004年   168篇
  2003年   146篇
  2002年   138篇
  2001年   117篇
  2000年   98篇
  1999年   124篇
  1998年   99篇
  1997年   121篇
  1996年   110篇
  1995年   79篇
  1994年   65篇
  1993年   59篇
  1992年   72篇
  1991年   71篇
  1990年   66篇
  1989年   72篇
  1988年   68篇
  1987年   61篇
  1986年   70篇
  1985年   71篇
  1984年   88篇
  1983年   58篇
  1982年   86篇
  1981年   56篇
  1980年   53篇
  1979年   37篇
  1978年   21篇
  1977年   14篇
  1976年   18篇
  1972年   10篇
排序方式: 共有6974条查询结果,搜索用时 15 毫秒
151.
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.  相似文献   
152.
153.
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis.  相似文献   
154.
Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K.  相似文献   
155.
AIMS: To assess the possibility that bifidobacteria compete with Porphyromonas gingivalis for their mutual growth factor vitamin K. This study also examined whether salivary Bifidobacterium species decrease vitamin K concentration in the growth medium. METHODS AND RESULTS: Sixty-five strains of Bifidobacterium were obtained from 20 of 24 periodontally healthy subjects. Bifidobacterium dentium was most frequently detected in the saliva of subjects, followed by Bifidobacterium adolescentis, Bifidobacterium longum, and Bifidobacterium urinalis. The growth of most Bifidobacterium isolates, except that of B. urinalis, was stimulated by vitamin K. Moreover, the isolates were capable of decreasing vitamin K after incubation, which suggests that bifidobacteria compete with P. gingivalis for vitamin K. In a co-culture, a representative strain -B. adolescentis S2-1 - inhibited the growth of P. gingivalis if it was inoculated in the medium before P. gingivalis. CONCLUSIONS: B. adolescentis S2-1 decreased vitamin K concentration and inhibited the growth of P. gingivalis by possibly competing for the growth factor. SIGNIFICANCE AND IMPACT OF THE STUDY: Salivary bifidobacteria may possess the potential to suppress the growth of P. gingivalis by reducing the growth factor(s) in the environment.  相似文献   
156.
产超广谱β-内酰胺酶细菌耐药性基因型分析   总被引:1,自引:0,他引:1  
检测我院产超广谱β-内酰胺酶(ESBLs)大肠埃希菌和肺炎克雷伯菌的耐药性和基因型。表型确定临床分离产ESBLs的大肠埃希菌和肺炎克雷伯菌56株,应用PCR基因扩增技术及双脱氧DNA测序方法,分别对TEM、SHV、CTX-M-1、CTX-M-2和CTX-M-9编码基因进行分析。产酶菌株对亚胺培南、美洛培南、阿米卡星、头孢吡肟耐药性较低,对其他16种抗生素耐药性较高。在56株菌株中有50株为CTX-M型,占89%,34株为TEM型(60.7%),20株SHV型(35.7%);其中CTX-M-9型共计39株占78%,CTX-M-1型19株占38%,CTX-M-2型16株占32%。产ESBLs大肠埃希菌和肺炎克雷伯菌的耐药性值得关注,主要临床流行基因型是CTX-M型。  相似文献   
157.
The spontaneous release of [3H] gamma-aminobutyric acid ([3H]GABA) in various areas of rat brain injected with [3H]putrescine was examined using a push-pull perfusion technique. The release in a 25-min perfusate was highest in the caudate-putamen. The effect of high K+ stimulation on the release of [3H]GABA formed from [3H]putrescine was examined in the caudate-putamen. The release was enhanced by high K+ solution in a Ca2+-dependent manner.  相似文献   
158.
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).  相似文献   
159.
160.
The reproductive phase in chickpea (Cicer arietinum L.) is affected by salinity, but little is known about the underlying cause. We investigated whether high concentrations of Na+ and Cl in the reproductive structures influence reproductive processes. Chickpea genotypes contrasting in tolerance were subjected to 0, 35 or 50 mm NaCl applied to soil in pots. Flower production and abortion, pod number, percentage of empty pods, seed number and size were evaluated. The concentrations of Na+, K+ and Cl were measured in various plant tissues and, using X‐ray microanalysis, in specific cells of developing reproductive structures. Genotypic variation in reproductive success measured as seed yield in saline conditions was associated with better maintenance of flower production and higher numbers of filled pods (and thus seed number), whereas seed size decreased in all genotypes. Despite the variation in reproductive success, the accumulation of Na+ and Cl in the early reproductive tissues of developing pods did not differ between a tolerant (Genesis836) and a sensitive (Rupali) genotype. Similarly, salinity tolerance was not associated with the accumulation of salt ions in leaves at the time of reproduction or in seeds at maturity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号