首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76210篇
  免费   5422篇
  国内免费   3463篇
  85095篇
  2024年   185篇
  2023年   1180篇
  2022年   1905篇
  2021年   2482篇
  2020年   2361篇
  2019年   2730篇
  2018年   2660篇
  2017年   1913篇
  2016年   1861篇
  2015年   2399篇
  2014年   4492篇
  2013年   5604篇
  2012年   3367篇
  2011年   4556篇
  2010年   3489篇
  2009年   3837篇
  2008年   3940篇
  2007年   4039篇
  2006年   3579篇
  2005年   3195篇
  2004年   2830篇
  2003年   2394篇
  2002年   2149篇
  2001年   1496篇
  2000年   1265篇
  1999年   1325篇
  1998年   1208篇
  1997年   1071篇
  1996年   1015篇
  1995年   916篇
  1994年   827篇
  1993年   763篇
  1992年   668篇
  1991年   640篇
  1990年   511篇
  1989年   477篇
  1988年   430篇
  1987年   408篇
  1986年   377篇
  1985年   502篇
  1984年   706篇
  1983年   529篇
  1982年   600篇
  1981年   413篇
  1980年   411篇
  1979年   335篇
  1978年   240篇
  1977年   186篇
  1976年   159篇
  1975年   138篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human–primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human–primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human–primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human–primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human–primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from “business as usual.” We encourage primatologists to help lead the way.  相似文献   
992.
Numbers of emerging evidence suggest that variable microRNA (miRNA) expression facilitates the aging process. In this study, we distinguished aberrant miRNA expression in aged skin and explored the biological functions and potential mechanism of upregulated miR-302b-3p. At first, miRNA microarray analysis was examined to explore miRNA expression profiling in the skin of aging mice model by D -galactose (d -gal) injection. We identified 29 aberrant miRNAs in aged mice skin. Next, KEGG enrichment analysis was conducted with DIANA-miPath v3.0, which was revealed that enrichment pathways involved in such processes as extracellular matrix-receptor interaction, MAPK signaling pathway, and mammalian target of rapamycin (mTOR) signaling pathway. The target genes of deregulated miRNAs were predicted from four bioinformatic algorithms (miRDB, Targetscan, miRwalk, and Tarbase). The interaction network of miRNAs and their targets were visualized using Cytoscape software. As a result, we found that some hub genes (including JNK2, AKT1/2/3, PAK7, TRPS1, BCL2L11, and IKZF2) were targeted by 12 potential miRNAs (including miR-302b-3p, miR-291a-5p, miR-139-3p, miR-467c-3p, miR-186-3p, etc.). Subsequently, we identified five upregulated miRNA via quantitative polymerase chain reaction and all of them were confirmed increased significantly in aged skin tissues compared with young control tissues. Among them, high expression of miR-302b-3p was verified in both aged skin tissues and senescence fibroblasts. Furthermore, miR-302b-3p mimic accelerated skin fibroblast senescence and suppressed the longevity-associated gene Sirtuin 1(Sirt1) expression, whereas miR-302b-3p inhibitor could delay skin fibroblast senescence and contribute Sirt1 expression. In addition, we demonstrated that c-Jun N-terminal kinase 2(JNK2) is a direct target of miR-302b-3p by a luciferase reporter assay. An inverse correlation was verified in fibroblasts between miR-302b-3p and JNK2. Most importantly, siRNA JNK2 confirmed that low expression of JNK2 could accelerate fibroblasts senescence. In conclusion, our results indicated that overexpressed miR-302b-3p plays an important biological role in accelerating skin aging process via directly targeting JNK2 gene.  相似文献   
993.
Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, promoting the association with beneficial microorganisms, but also affecting plant interactions with harmful organisms. They are also plant hormones in-planta, acting as modulators of plant responses under nutrient-deficient conditions, mainly phosphate (Pi) starvation. In the present work, we investigate the potential role of SLs as regulators of early Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2′-epi-GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and wheat under Pi deprivation. 2′-epi-GR24 application also increased SL production and the expression of Pi starvation markers under normal Pi conditions, being its effect dependent on the endogenous SL levels. Remarkably, 2′-epi-GR24 also impacted the root metabolic profile under these conditions, promoting the levels of metabolites associated to plant responses to Pi limitation, thus partially mimicking the pattern observed under Pi deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the results, we propose that SLs may act as early modulators of plant responses to P starvation.  相似文献   
994.
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.  相似文献   
995.
996.
997.
Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left–right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the ‘morphogen hypothesis’ believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the ‘two-cilia model’ posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left–right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved.  相似文献   
998.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   
999.
Many bacteria form Gln-tRNAGln and Asn-tRNAAsn by conversion of the misacylated Glu-tRNAGln and Asp-tRNAAsn species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction.A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn2+ site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn2+ binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNAGln or Asn-tRNAAsn.  相似文献   
1000.
Molecular methods are a necessary tool for sexing monomorphic birds. These molecular approaches are usually reliable, but sexing protocols should be evaluated carefully because biochemical interactions may lead to errors. We optimized laboratory protocols for genetic sexing of a monomorphic shorebird, the upland sandpiper (Bartramia longicauda), using two independent sets of primers, P2/P8 and 2550F/2718R, to amplify regions of the sex‐linked CHD‐Z and CHD‐W genes. We discovered polymorphisms in the region of the CHD‐Z intron amplified by the primers P2/P8 which caused four males to be misidentified as females (n = 90 mated pairs). We cloned and sequenced one CHD‐W allele (370 bp) and three CHD‐Z alleles in our population: Z° (335 bp), Z (331 bp) and Z″ (330 bp). Normal (Z°Z°) males showed one band in agarose gel analysis and were easily differentiated from females (Z°W), which showed two bands. However, males heterozygous for CHD‐Z alleles (Z′Z″) unexpectedly showed two bands in a pattern similar to females. While the Z′ and Z″ fragments contained only short deletions, they annealed together during the polymerase chain reaction (PCR) process and formed heteroduplex molecules that were similar in size to the W fragment. Errors previously reported for molecular sex‐assignment have usually been due to allelic dropout, causing females to be misidentified as males. Here, we report evidence that events in PCRs can lead to the opposite error, with males misidentified as females. We recommend use of multiple primer sets and large samples of known‐sex birds for validation when designing protocols for molecular sex analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号