首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   9篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   7篇
  2013年   13篇
  2012年   2篇
  2011年   13篇
  2010年   5篇
  2009年   10篇
  2008年   2篇
  2007年   10篇
  2006年   8篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1984年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
61.
Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with reduced risk for Alzheimer's disease (AD) and selected NSAIDs racemates suppress beta-amyloid (Abeta) accumulation in vivo and Abeta42 production in vitro. Clinical use of NSAIDs for preventing or treating AD has been hampered by dose-limiting toxicity believed to be due to cyclooxygenase (COX)-inhibition that is reportedly not essential for selective Abeta42 reduction. Profens have racemates and R-enantiomers were supposed to be inactive forms. Here we demonstrate that R-ibuprofen and R-flurbiprofen, with poor COX-inhibiting activity, reduce Abeta42 production by human cells. Although these R-enantiomers inhibit nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB can selectively regulate Abeta42, Abeta42 reduction is not mediated by inhibition of NF-kappaB activation. Because of its efficacy at lowering Abeta42 production and low toxicity profile, R-flurbiprofen is a strong candidate for clinical development.  相似文献   
62.
The effect of celecoxib, a cyclooxygenase-2 selective inhibitor, on a human cervical cancer cell line, HeLa cells, was examined. We found that celecoxib increased DNA ladder formation and the activity of caspase-3, indicating that celecoxib induced apoptosis in HeLa cells. Celecoxib suppressed the expression of an anti-apoptotic protein, survivin, in both protein and mRNA levels. The overexpression of survivin overrode caspase-3 activation induced by celecoxib. Subsequently, we performed luciferase reporter assay with the reporter vector containing human survivin promoter region and electrophoretic mobility shift assay and found that the -75 to -66 bp region relative to the initiating codon played an important role in celecoxib action to suppress survivin promoter activity. Our findings might provide a new insight into the anti-cancer effects of celecoxib.  相似文献   
63.
NSAIDs downregulate survivin (an apoptosis inhibitor), increase apoptosis and reduce growth of colon polyps and cancers. Recently, anti- and pro-apoptosis isoforms of survivin were identified. The roles of these isoforms in NSAID-induced colon cancer cell death have not been examined, and is the focus of this study. The anti-apoptosis isoforms, wild-type (WT) survivin and survivin-ΔEx3, and the pro-apoptosis isoform, survivin-2b, were present in HT-29 and RKO cells. Indomethacin treatment significantly decreased WT survivin and survivin-ΔEx3 (30.5±10.4% and 20.3±6.7%, respectively) but not survivin-2b mRNA in RKO cells. In HT-29 cells, all three isoform mRNAs were slightly decreased by indomethacin treatment. Consistently, indomethacin treatment dramatically reduced WT survivin protein in RKO but not HT-29 cells. Indomethacin treatment increased apoptosis and general cell death more significantly in RKO cells (75.7±1.1% cell death at 48 h) than in HT-29 cells (25.4±3.7% cell death at 48 h). Anti-sense suppression of survivin-2b mRNA increased resistance of both RKO and HT-29 cells to indomethacin. These data support a role for survivin isoforms in colon cancer cell apoptosis, and thus in prevention of colon cancer growth by NSAIDs.  相似文献   
64.
Fused silica-packed capillary columns containing vancomycin immobilized by reductive amination on an aldehyde-silica were used to separate enantiomers of some non-steroidal anti-inflammatory drugs. Attempts have been made to qualitatively explain the influence of various mobile phase compositions on the enantioselective retention. The effects of mobile phase pH, buffer, and organic modifier concentrations were investigated as well as the influence of salts of hydrophobic ions added to the mobile phase to induce ion pair retention. Chirality 10:273–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
65.
尼美舒利具有强大的抗炎、镇痛和解热作用。临床主要用于急慢性疼痛、关节炎、月经痛、癌症疼痛和解热。其作用机理主要是通过选择性抑制COX-2而抑制前列腺素的合成。尼美舒利的不良反应与其他NSAIDs相似,但对胃肠道副作用较少。本文总结了尼美舒利的主要临床应用及不良反应。  相似文献   
66.
Three COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs), etoricoxib, parecoxib, and nimesulide are widely prescribed against inflammatory conditions. However, their long term administration leads to severe conditions of cardiovascular complications and gastric ulceration. In order to minimize these side effects, C-terminal half (C-lobe) of colostrum protein lactoferrin has been indicated to be useful if co-administered with NSAIDs. Lactoferrin is an 80 kDa glycoprotein with two similar halves designated as N- and C-lobes. Since NSAID-binding site is located in the C-terminal half of lactoferrin, C-lobe was prepared from lactoferrin by limited proteolysis using proteinase K. The incubation of lactoferrin with serine proteases for extended periods showed that N-lobe was completely digested but C-lobe was resistant for more than 72 h indicating its long half life in the animal gut. The solution studies have shown that COX-2-specific NSAIDs bind to C-lobe with binding constants ranging from 10−4 to 10−5 M showing significant affinities for sequestering these compounds. In order to understand the mode of binding and sequestering properties, the complexes of C-lobe with all these three compounds, etoricoxib, parecoxib, and nimesulide were prepared and the structures of their complexes with C-lobe were determined at 2.2, 2.9, and 2.7 ? resolutions, respectively. The analysis of the structures of complexes of C-lobe with NSAIDs clearly show that all the three compounds bind firmly at the same ligand-binding site in the C-lobe revealing the details of the interactions between C-lobe and NSAIDs. The mode of binding of COX-2-specific NSAIDs to C-lobe is similar to that of the binding of COX-2 non-specific NSAIDs to C-lobe.  相似文献   
67.
Autoimmune diseases such as rheumatoid arthritis and gastrointestinal disorders such as stomach ulcers are often treated with drugs. NSAIDs, a common treatment in rheumatoid arthritis, may cause stomach ulcers which call for additional medications, notably antacids in the sense of drugs that suppress acid secretion by the stomach. Infection with Helicobacter pylori also plays a role in the ulcers. The infection is typically treated with antibiotics added to antacids. Considering NSAIDs and antacids, we suspect that overmedication is common to the extent that particular diets are a better option. Current research and current treatments with these drugs are also problematic since circadian rhythms are mostly disregarded. All the processes involved in the disorders treated show marked variations in the course of the day. Hence experiments conforming to the guidelines of evidence-based medicine, and treatments in line with them, have outcomes strongly depending on the time factor. This calls for reforms in medicine with fresh inputs from biology.  相似文献   
68.
It was envisaged to combine high antipyretic activity of paracetamol into commonly used NSAIDs. To achieve this goal new chemical entities were synthesized by chemically combining paracetamol and NSAIDs, and biologically evaluated for their antipyretic, analgesic, anti-inflammatory and ulcerogenic potential. The acid chloride of parent NSAIDs was reacted with excess of p-aminophenol to yield the desired p-amidophenol derivatives (1B–7B). Acetate derivatives (1C–7C) of these phenols (1B–7B) were also prepared by their treatment with acetic anhydride, in order to see the impact of blocking the free phenolic group on the biological activity of the derivatives. All the synthesized p-amidophenol derivatives showed improved antipyretic activity than paracetamol with retention of anti-inflammatory activity of their parent NSAIDs. These compounds elicited no ulcerogenicity unlike their parent drugs.  相似文献   
69.
In this study, the effects of acetylsalicylic acid (aspirin) on the expression of uPAR and the mechanism by which it regulates expression of uPAR was examined in two different colon cancer cell lines HCT116 and GEO, respectively. The study shows that under physiological concentration, aspirin upregulates steady-state level expression of uPAR mRNA as well as expression of uPAR protein. Using a transient transfection assay, a region corresponding to -1 to -398 region of uPAR promoter has been identified which shows maximum responsiveness to aspirin treatment and found that this region is sufficient for the aspirin-induced up-regulation of uPAR. A stable integration of a single copy of this region coupled to luciferase reporter gene into the HCT116 genome also behaved similarly. Using gel mobility shift assays, it is found that the distal AP1 region between -171 and -186 is responsible for the aspirin-induced up-regulation of uPAR. Mutation of this region reduced up-regulation. Supershift assays identify that the bound proteins at this region are c-Jun and Fra-1. Real-time PCR analysis showed more than 4-fold increase in the binding of c-Jun and a 1.6-fold increase in the binding of Fra-1 in this region and this up-regulation corresponds to an increased binding of acetylated histone H4 in this region. Since an increase in the expression of uPAR corresponds to an increase in the migration of the cell, a migration assay was performed and result showed a 3-fold increased migration of HCT116 cells through the vitronectin-coated layer. Thus, an AP1 mediated pathway for aspirin induced up-regulation of uPAR has been identified.  相似文献   
70.
Membrane fusion: a new function of non steroidal anti-inflammatory drugs   总被引:1,自引:0,他引:1  
Membrane fusion is an important event in many biological processes and is characterized by several intermediate steps of which content mixing between the two fusing vesicles signals the completion of the process. Fusion induced solely by small drug molecules is not a common event. Non Steroidal Anti-Inflammatory Drugs (NSAIDs), that control pain and inflammation, are also capable of exhibiting diverse functions. In this study we present a new function of NSAIDs belonging to the oxicam group, as membrane fusogenic agents. Small Unilamellar Vesicles (SUVs) formed by the phospholipid, dimyristoylphosphatidylcholine (DMPC), were used as model membranes. Fluorescence assays using terbium/dipicolinic acid (Tb/DPA) were used to monitor content mixing and corresponding leakage in presence of the drugs. Transmission Electron Microscope (TEM) was also used to image fusion bodies in drug treated vesicles as compared to the untreated ones. The results show that the three oxicam NSAIDs viz. Meloxicam, Piroxicam and Tenoxicam can induce fusion of DMPC vesicles and lead the fusion process to completion at a very low drug to lipid ratio (D/L) of 0.045. The oxicam drugs exhibit differential fusogenic behavior as reflected in the kinetics of content mixing and leakage, both of which can be described by a single exponential rate equation. Moreover, not all NSAIDs can induce membrane fusion. Indomethacin, an acetic acid group NSAID and ibuprofen, a propionic acid group NSAID, did not induce fusion of vesicles. This new property of NSAIDs has important applications in biochemical processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号