首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   12篇
  国内免费   13篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   17篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   26篇
  2013年   16篇
  2012年   20篇
  2011年   26篇
  2010年   21篇
  2009年   18篇
  2008年   12篇
  2007年   21篇
  2006年   15篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
201.
202.
本文报道了鼻咽癌患者血清中抗Epstein-Barr病毒特异性DNA酶抗体的检测方法,并对影响检测结果的几种因素进行了探讨。用抗酶率来表示抗体滴度可在酶用量为0.08—0.25U范围内进行检测,使实验条件容易控制。  相似文献   
203.
本文运用定点克隆法并结合鸟枪法,对人类鼻咽癌细胞抹CNE2转化基因Tx中一个与转化作用有关的Eco RI片段,进行了核苷酸序列分析。此种克隆方法的运用,大大减少了DNA模板的数量,并加快了测序的进展。将序列分析结果输入美国NCI的CRAY-2型超级电子计算机作进一步分析,以寻找基因库中的同源序列,酶切位点,开放阅读框架(ORF)。在人类DNA基因数据库中没有找到同源序列,从而证实Tx基因是一种新的人类转化基因。计算机的分析还得出了一系列有价值的结论,为进一步深入探讨这个基因在人类鼻咽癌发病学中的作用,提供了重要的资料。这是首次报道的Tx基因核苷酸序列分析结果。  相似文献   
204.
Regulation of intracellular cholesterol metabolism has been studied in Epstein-Barr virus-transformed lymphoblasts from patients with Niemann-Pick type C (NPC) and the Nova Scotia type D (NPD) disease. Addition of LDL to normal lymphoblasts cultured in lipoprotein-deficient medium increased cholesterol esterification 10-fold (to a maximum of 1.0 nmol/h/mg protein at 15 h), while little stimulation was seen in NPC cells. The response by NPD lymphoblasts was intermediate, reaching approximately half of normal values by 12–24 h. Lymphoblasts from both NPC and NPD obligate heterozygotes exhibited 50% of normal LDL-stimulated cholesterol esterification at 6 h, when activity was s1?0% of normal values in patient cells. Fluorescence staining with filipin indicated excessive intracellular accumulation of LDL-derived cholesterol in both NPC and NPD lymphoblasts. Downregulation of LDL receptor mRNA levels by LDL, measured by S1 nuclease protection assay, was also impaired in NP lymphoblasts and fibroblasts (NPC > NPD), although a similar rate of receptor protein down-regulation by LDL (t12 = 10–15 h) was observed in normal and NP lymphoblasts. In contrast, LDL down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not appear to be affected in NP cells: LDL produced a 3-fold (lymphoblasts) of > 10-fold (fibroblasts) decrease by 12 h in both normal and affected cells. Thus, NPC and NPD lymphoblasts exhibit distinct defects in cholesterol esterification and storage, similar to those observed in mutant fibroblasts. Other regulatory responses are also impaired in NPC lymphoblasts but appear to be less affected in NPD cells. Lymphoblasts should provide a valuable immortalized cell line model for study of defective regulation of cholesterol esterification and transfort in Niemann-Pick type II disease, and may also suitable for diagnosis and carrier detection.  相似文献   
205.
Fibroblasts from patients with Niemann-Pick Type II disease, including the panethnic type C (NPC) and Nova Scotia Acadian type D (NPD) forms, exhibit reduced or delayed stimulation of cholesterol esterification by low density lipoprotein (LDL). Based on recent evidence that cholesterol esterification can also be stimulated by cell surface sphingomyelin hydrolysis, we have compared the response of normal, NPC and NPD fibroblasts to treatment with exogenous sphingomyelinase (SMase). Staphylococcus aureus SMase (> 0.05 U/ml) hydrolyzed over 90% of endogenous sphingomyelin within 1 h and increased incorporation of [3H]oleic acid into cholesterol-[3H]oleate after an initial lag in all three cell types. However, normal levels of cholesterol esterification were not observed for NP Type II fibroblasts: four NPD cell lines exhibited an average of 32% of normal response while cholesterol esterification was only 20% in two well-characterized NPC lines. A third NPC line exhibited normal response to SMase despite greater than 90% impairment of LDL-stimuated cholesterol esterification. Incubation of fibroblasts with LDL followed by SMase produced a synergistic response, particularly in NPC cells where there was little response to either treatment alone. Chloroquinone abolished LDL-stimulated cholesterol esterification in normal fibroblasts but had no effect on the response to SMase, indicating that lysosomal enzymes may not be involved in SMase-mediated cholesterol esterification. These results suggest that intracellular processing of cholesterol derived from either LDL or release from the plasma membrane (by sphingomyelin hydrolysis) is affected in Niemann-Pick Type II cells and that these pathways can complement one another in the stimulation of cholesterol esterification.  相似文献   
206.
Niemann‐Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease‐causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3‐ß‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one (U18666A), a cholesterol transport‐inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A‐treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A‐treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A‐treated fibroblasts may represent a secondary event derived from a defective metabolic pathway.  相似文献   
207.
208.
Tx基因与Igk基因的同源性研究及其在不同细胞株的表达   总被引:10,自引:1,他引:9  
本文对以前报道的Tx基因2.8kb片段的核苷酸序列与人免疫球蛋白kappa链C区基因的核苷酸序列及其编码产物的氨基酸序列进行了同源性比较。结果表明,Tx基因与kappa链C区基因的同源性高达99.5%以上,编码区的同源性高达100%。从而提示Tx基因与kappa链C区基因可能是同一种基因。限制性内切酶图谱及Southern印迹杂交分析,也进一步支持这一观点。本文还报道了kappa链C区基因在不同细  相似文献   
209.
BRD7 is a novel gene which involved NPC in our lab. Our previous studies showed that BRD7 was expressed at high level in normal nasopharyngeal epithelial tissues, but at low level in nasopharyngeal carcinoma biopsies and cell lines. In these papers, we found that ectopic expression of BRD7 can decrease cell proliferation and capability to form colonies in soft agar. FCM (Flow cytometry) assay indicated that the cell cycle progression from G1 to S phase was inhibited and the expression of cyclinD1 was significantly decreased after being transfected with BRD7 in HNE1 cells (NPC cells). To further investigate the molecular mechanism of BRD7 suppression of NPC cells growth, the cDNA microarray was performed to detect difference in gene expression profile induced by BRD7. The results indicated that 21 genes expression were changed after being transfected with BRD7 and the differentially expressed gene including α-catenin, cyclinD1, E2F3 was confirmed by western-blot. Next, we found that even though no obvious changes of the total expression of β-catenin were observed, the accumulation of β-catenin in nucleus was blocked. In addition, it was found that the expression of β-catenin was up-regulated in the complex composed of β-catenin and α-catenin in HNE1 cells induction of BRD7. So, we concluded that over-expression of BRD7 increased the expression of α-catenin which “hold” β-catenin in the complex and inhibited its accumulating in nucleus. At last, we demonstrated the c-jun, p-MEK, and p-ERK1/2 expression were down-regulated, and the Ap-1 promoter activity was inactive after being transfected with BRD7. We also found that over-expression of BRD7 can inactivate the c-jun and p-ERK1/2 after being treated with EGF in HNE1 cells. These results indicated that BRD7 played a negative role in ERK1/2 pathway. Taken together, our present results provide new insights for BRD7 function to inhibit NPC cells growth through negative regulating β-catenin and ERK1/2 pathways.  相似文献   
210.
The NPC1 and NPC1L1 are related genes whose general role is in cholesterol trafficking. However, reduction of activity of these genes results in very different phenotypes. Niemann–Pick C disease type 1 is a neurodegenerative disease with no current treatment, where cholesterol accumulates in lysosomes. The disease arises due to autosomal recessive mutations in the NPC1 gene. The NPC1L1 gene has recently been identified as the target for the drug ezetimibe (Zetia), a cholesterol absorption inhibitor, and has been shown to be an intestinal cholesterol transporter. We demonstrate that human NPC1L1, as well as human NPC1, can functionally substitute for the Caenorhabditis elegans genes ncr-1 and/or ncr-2. These genes are known to play a role in the process of dauer formation, a process which can be modulated by cholesterol in sensitized genetic backgrounds. Our results demonstrate that these human proteins retain some functional conservation, though their biological roles are vastly different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号