首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   12篇
  国内免费   13篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   17篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   26篇
  2013年   16篇
  2012年   20篇
  2011年   26篇
  2010年   21篇
  2009年   18篇
  2008年   12篇
  2007年   21篇
  2006年   15篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
191.
We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.  相似文献   
192.
运用cDNA微阵列技术分析NAG7基因重表达对HNE1细胞基因表达谱的影响.抽提HNE1细胞和pcDNA3.1(+)/NAG7/HNE1细胞总RNA,分离polyA mRNA,将mRNA逆转录为cDNA,并在逆转录过程中用33P-dATP进行标记,与含有16 150个基因和表达序列标签(EST)的cDNA表达阵列膜杂交,获得基因表达图谱.Array Gauge软件分析NAG7基因的重表达所导致的鼻咽癌细胞HNE1基因表达谱改变,并用RNA印迹对微阵列杂交结果进行验证.结果分析表明,2倍以上的差异表达基因或EST 179个,其中表达上调的91个,表达下调的88个;已明确基因表达产物的上调基因29个,下调基因37个.在差异表达基因中,涉及基因转录调控、信号转导、细胞生长、细胞代谢和细胞凋亡等基因.RNA印迹证实生长阻滞特异蛋白1(gas 1)基因表达上调.特别值得关注的是, 先前的蛋白质组研究结果亦发现NAG7基因可导致生长阻滞特异蛋白1表达上调,说明gas 1基因在NAG7重表达的HNE1细胞中具有重要作用,这为深入研究NAG7基因的作用环节和机理提供了重要的线索.  相似文献   
193.
Deciphering the assembly pathway of Sm-class U snRNPs   总被引:1,自引:0,他引:1  
Neuenkirchen N  Chari A  Fischer U 《FEBS letters》2008,582(14):1997-2003
The assembly of the Sm-class of uridine-rich small nuclear ribonucleoproteins (U snRNPs), albeit spontaneous in vitro, has recently been shown to be dependent on the aid of a large number of assisting factors in vivo. These factors are organized in two interacting units termed survival motor neuron (SMN)- and protein arginine methyltransferase 5 (PRMT5)-complexes, respectively. While the PRMT5-complex acts early in the assembly pathway by activating common proteins of U snRNPs, the SMN-complex functions to join proteins and RNA in a highly ordered, apparently regulated manner. Here, we summarize recent progress in the understanding of this process and discuss the influence exerted by the aforementioned trans-acting factors.  相似文献   
194.
The transport receptor Mex67-Mtr2 functions in mRNA export, and also by a loop-confined surface on the heterodimer binds to and exports pre-60S particles. We show that Mex67-Mtr2 through the same surface that recruits pre-60S particles interacts with the Nup84 complex, a structural module of the nuclear pore complex devoid of Phe-Gly domains. In vitro, pre-60S particles and the Nup84 complex compete for an overlapping binding site on the loop-extended Mex67-Mtr2 surface. Chemical crosslinking identified Nup85 as the subunit in the Nup84 complex that directly binds to the Mex67 loop. Genetic studies revealed that this interaction is crucial for mRNA export. Notably, pre-60S subunit export impaired by mutating Mtr2 or the 60S adaptor Nmd3 could be partially restored by second-site mutation in Nup85 that caused dissociation of Mex67-Mtr2 from the Nup84 complex. Thus, the Mex67-Mtr2 export receptor employs a versatile binding platform on its surface that could create a crosstalk between mRNA and ribosome export pathways.  相似文献   
195.
ABCA1与NPC1在细胞内胆固醇转运中的作用   总被引:1,自引:0,他引:1  
腺苷三磷酸结合盒转运蛋白A1(ATP-binding cassette transporter A1,ABCA1)是血浆高密度脂蛋白(high-density lipoprotein,HDL)颗粒形成之初的限速步骤。ABCA1通过膜泡运输脂质至细胞表面的HDL载脂蛋白的作用机制尚未完全阐明。C型尼曼-匹克病(Niemann-Pick disease type C,NPC)主要由NPC1基因突变引起,NPC1蛋白能促进胆固醇和其他脂质从晚期胞内体/溶酶体流入其他细胞结构。ABCA1和NPC1相互作用保持细胞内脂质平衡,与Tangier病和N C P病等病理过程密切相关。  相似文献   
196.
Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.  相似文献   
197.
Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin α (Impα), which possesses the cNLS binding site, and importin β (Impβ), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impα and Impβ mutants, direct binding to purified Impα, and stimulation of this binding by Impβ. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impα. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/α/β complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impα binding. Impβ enhances the affinity of Impα for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impα results from a faster association in the presence of Impβ, whereas the dissociation rate is unaffected by Impβ. This implies that, after entry into the nucleus, the release of Impβ by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impα subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impα in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.  相似文献   
198.
Plastids in heterokonts, cryptophytes, haptophytes, dinoflagellates, chlorarachniophytes, euglenoids, and apicomplexan parasites derive from secondary symbiogenesis. These plastids are surrounded by one or two additional membranes covering the plastid-envelope double membranes. Consequently, nuclear-encoded plastid division proteins have to be targeted into the division site through the additional surrounding membranes. Electron microscopic observations suggest that the additional surrounding membranes are severed by mechanisms distinct from those for the division of the plastid envelope. In heterokonts, cryptophytes and haptophytes, the outermost surrounding membrane (epiplastid rough endoplasmic reticulum, EPrER) is studded with cytoplasmic ribosomes and connected to the rER and the outer nuclear envelope. In monoplastidic species belonging to these three groups, the EPrER and the outer nuclear envelope are directly connected to form a sac enclosing the plastid and the nucleus. This nuclear-plastid connection, referred to as the nucleus-plastid consortium (NPC), may be significant to ensure the transmission of the plastids during cell division. The plastid dividing-ring (PD-ring) is a conserved component of the division machinery for both primary and secondary plastids. Also, homologues of the bacterial cell division protein, FtsZ, may be involved in the division of secondary plastids as well as primary plastids, though in secondary plastids they have not yet been localized to the division site. It remains to be examined whether or not dynamin-like proteins and other protein components known to function in the division of primary plastids are used also in secondary plastids. The nearly completed sequencing of the nuclear genome of the diatom Thalassiosira pseudonana will give impetus to molecular and cell biological studies on the division of secondary plastids.  相似文献   
199.
Recent studies on the endocytic itinerary of glycosphingolipids (GSLs) in sphingolipid storage disease (SLSD) fibroblasts have yielded new insights into the mechanisms underlying the endocytosis and intracellular sorting of lipids in normal and disease cells. Here we highlight new data on clathrin-independent endocytosis of GSLs, the involvement of sphingolipid–cholesterol interactions in perturbation of endocytic trafficking, and potential roles for rab proteins in regulation of GSL transport in SLSDs.  相似文献   
200.
本文报道了鼻咽癌患者血清中抗Epstein-Barr病毒特异性DNA酶抗体的检测方法,并对影响检测结果的几种因素进行了探讨。用抗酶率来表示抗体滴度可在酶用量为0.08—0.25U范围内进行检测,使实验条件容易控制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号