全文获取类型
收费全文 | 262篇 |
免费 | 14篇 |
国内免费 | 12篇 |
专业分类
288篇 |
出版年
2024年 | 3篇 |
2023年 | 3篇 |
2022年 | 11篇 |
2021年 | 8篇 |
2020年 | 4篇 |
2019年 | 6篇 |
2018年 | 17篇 |
2017年 | 9篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 26篇 |
2013年 | 16篇 |
2012年 | 20篇 |
2011年 | 26篇 |
2010年 | 21篇 |
2009年 | 18篇 |
2008年 | 12篇 |
2007年 | 21篇 |
2006年 | 15篇 |
2005年 | 9篇 |
2004年 | 2篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1987年 | 2篇 |
1985年 | 1篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有288条查询结果,搜索用时 82 毫秒
1.
Wälde S Thakar K Hutten S Spillner C Nath A Rothbauer U Wiemann S Kehlenbach RH 《Traffic (Copenhagen, Denmark)》2012,13(2):218-233
In vertebrates, the nuclear pore complex (NPC), the gate for transport of macromolecules between the nucleus and the cytoplasm, consists of approximately 30 different nucleoporins (Nups). The Nup and SUMO E3-ligase Nup358/RanBP2 are the major components of the cytoplasmic filaments of the NPC. In this study, we perform a structure-function analysis of Nup358 and describe its role in nuclear import of specific proteins. In a screen for nuclear proteins that accumulate in the cytoplasm upon Nup358 depletion, we identified proteins that were able to interact with Nup358 in a receptor-independent manner. These included the importin α/β-cargo DBC-1 (deleted in breast cancer 1) and DMAP-1 (DNA methyltransferase 1 associated protein 1). Strikingly, a short N-terminal fragment of Nup358 was sufficient to promote import of DBC-1, whereas DMAP-1 required a larger portion of Nup358 for stimulated import. Neither the interaction of RanGAP with Nup358 nor its SUMO-E3 ligase activity was required for nuclear import of all tested cargos. Together, Nup358 functions as a cargo- and receptor-specific assembly platform, increasing the efficiency of nuclear import of proteins through various mechanisms. 相似文献
2.
目的:应用KV-CBCT分析鼻咽癌调强放射治疗时的摆位误差,为鼻咽癌调强放射治疗计划设计时CTV外扩PTV边界的大小提供参考。方法:选取30例IMRT的鼻咽癌患者,治疗过程中每周一次应用KV-CBCT采集患者治疗前的CT图像,将所得图像与定位CT图像进行匹配,分别测定X、Y、Z轴三个方向的摆位误差。结果:30例患者共拍摄168次KV-CBCT,获得168组摆位误差结果,群体摆位误差分别为X轴-0.15±1.43 mm,Y轴0.20±1.58 mm,Z轴-0.21±1.65 mm;根据Van Herk公式计算得到各方向的CTV-PTV外放边界值X、Y、Z轴分别为3.1 mm、3.3 mm和3.4 mm。结论:应用KV-CBCT影像系统可实时测量摆位误差并在线进行纠正,减小摆位误差,为CTV-PTV外放边界提供参考。 相似文献
3.
4.
Shu‐Er Chow Jong‐Shyan Wang Ming‐Rung Lin Chien Lin Lee 《Journal of cellular biochemistry》2011,112(11):3459-3468
The members of Rho family are well known for their regulation of actin cytoskeleton to control cell migration. The Cip/kip members of cyclin‐dependent (CDK) inhibitors have shown to implicate in cell migration and cytoskeletal dynamics. p57kip2, a CDK inhibitor, is frequently down‐regulated in several malignancy tumors. However, its biological roles in human nasopharyngeal carcinoma (NPC) cells remained to be investigated. Here, we found p57kip2 has nuclear and cytoplasm distributions and depletion of endogenous p57kip2 did not change the cell‐cycle progression. Inhibition of cell proliferation by mitomycin C promoted FBS‐mediated cell migration and accompanied with the downregulation of ΔNp63α and p57kip2, but did not change the level of p27kip1, another CDK inhibitor. By using siRNA transfection and cell migration/invasion assays, we found that knockdown of p57kip2, but not ΔNp63α, involved in promotion of NPC cell migration and invasion via decrease of phospho‐cofilin (p‐cofilin). Treatment with Y‐27632, a specific ROCK inhibitor, we found that dysregulation of ROCK/cofilin pathway decreased p‐cofilin expression and induced cell migration. This change of p‐cofilin induced actin remodeling and pronounced increase of membrane protrusions. Further, silence of p57kip2 not only decreased the interaction between p57kip2 and LIMK‐1 assayed by immunoprecipitation but also reduced the level of phospho‐LIMK1/2. Therefore, this study indicated that dysregulation of p57kip2 promoted cell migration and invasion through modulation of LIMK/cofilin signaling and suggested this induction of inappropriate cell motility might contribute to promoting tumor cell for metastasis. J. Cell. Biochem. 112: 3459–3468, 2011. © 2011 Wiley Periodicals, Inc. 相似文献
5.
Ximing Du Abdulla S. Kazim Ian W. Dawes Andrew J. Brown Hongyuan Yang 《Traffic (Copenhagen, Denmark)》2013,14(1):107-119
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III. 相似文献
6.
Elizabeth J. TarlingPeter A. Edwards 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(3):386-395
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
7.
Vincent Dani Philippe Ganot Fabrice Priouzeau Paola Furla Cecile Sabourault 《Molecular ecology》2014,23(18):4527-4540
The symbiotic interaction between cnidarians, such as corals and sea anemones, and the unicellular algae Symbiodinium is regulated by yet poorly understood cellular mechanisms, despite the ecological importance of coral reefs. These mechanisms, including host–symbiont recognition and metabolic exchange, control symbiosis stability under normal conditions, but also lead to symbiosis breakdown (bleaching) during stress. This study describes the repertoire of the sterol‐trafficking proteins Niemann‐Pick type C (NPC1 and NPC2) in the symbiotic sea anemone Anemonia viridis. We found one NPC1 gene in contrast to the two genes (NPC1 and NPC1L1) present in vertebrate genomes. While only one NPC2 gene is present in many metazoans, this gene has been duplicated in cnidarians, and we detected four NPC2 genes in A. viridis. However, only one gene (AvNPC2‐d) was upregulated in symbiotic relative to aposymbiotic sea anemones and displayed higher expression in the gastrodermis (symbiont‐containing tissue) than in the epidermis. We performed immunolabelling experiments on tentacle cross sections and demonstrated that the AvNPC2‐d protein was closely associated with symbiosomes. In addition, AvNPC1 and AvNPC2‐d gene expression was strongly downregulated during stress. These data suggest that AvNPC2‐d is involved in both the stability and dysfunction of cnidarian–dinoflagellate symbioses. 相似文献
8.
9.
Chikatoshi Yanagimoto Masaru Harada Hiroto Kumemura Takumi Kawaguchi Shinichiro Hanada Yukio Koizumi Haruaki Ninomiya Toshihiro Sugiyama 《Experimental cell research》2009,315(2):119-126
Wilson disease is a genetic disorder characterized by the accumulation of copper in the body by defective biliary copper excretion. Wilson disease gene product (ATP7B) functions in copper incorporation to ceruloplasmin (Cp) and biliary copper excretion. However, copper metabolism in hepatocytes has been still unclear. Niemann-Pick disease type C (NPC) is a lipid storage disorder and the most commonly mutated gene is NPC1 and its gene product NPC1 is a late endosome protein and regulates intracellular vesicle traffic. In the present study, we induced NPC phenotype and examined the localization of ATP7B and secretion of holo-Cp, a copper-binding mature form of Cp. The vesicle traffic was modulated using U18666A, which induces NPC phenotype, and knock down of NPC1 by RNA interference. ATP7B colocalized with the late endosome markers, but not with the trans-Golgi network markers. U18666A and NPC1 knock down decreased holo-Cp secretion to culture medium, but did not affect the secretion of other secretory proteins. Copper accumulated in the cells after the treatment with U18666A. These findings suggest that ATP7B localizes in the late endosomes and that copper in the late endosomes is transported to the secretory compartment via NPC1-dependent pathway and incorporated into apo-Cp to form holo-Cp. 相似文献
10.
Rho kinase (ROCK) may play an important role in regulating biological events of cells, including proliferation, differentiation and survival/death. Blockade of ROCK promotes axonal regeneration and neuron survival in vivo and in vitro, thereby exhibiting potential clinical applications in spinal cord damage and stroke. Our previous studies have demonstrated that Fasudil, a selective ROCK inhibitor, induced neuroprotection in vitro. Here we used an in vivo model of hypoxia/reoxygenation (H/R) injury to examine the neuroprotective effect of Fasudil, and explore its possible mechanism(s) in vivo. H/R resulted in the loss of hippocampal neurons, accompanied by increased apoptosis of neurons in hippocampus. The expression of ROCK II and activity of ROCK in the brain were increased after H/R, and located only in microglia, but not in astrocytes and neurons. The administration of Fasudil inhibited the activity of ROCK in brain tissue and cultured microglia, and protected hippocampal neurons against H/R injury. Further immunohistochemical analysis and cytokine determination revealed that Fasudil inhibited inducible nitric oxide synthase immunoreactivity in microglia and pro-inflammatory factors in brain tissue after H/R, which is consistent with the observation wherein Fasudil reduced the pro-inflammatory factors nitric oxide, IL-1β, IL-6 and TNF-, and increased anti-inflammatory factor IL-10 in cultured microglia under normoxic or hypoxic conditions. Our results indicate that inhibition of ROCK by Fasudil may represent a useful therapeutic perspective by inhibiting microglial inflammatory responses in the CNS. 相似文献