首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3913篇
  免费   312篇
  国内免费   420篇
  2024年   12篇
  2023年   93篇
  2022年   98篇
  2021年   124篇
  2020年   122篇
  2019年   212篇
  2018年   199篇
  2017年   230篇
  2016年   142篇
  2015年   110篇
  2014年   226篇
  2013年   301篇
  2012年   203篇
  2011年   271篇
  2010年   180篇
  2009年   236篇
  2008年   207篇
  2007年   202篇
  2006年   200篇
  2005年   162篇
  2004年   131篇
  2003年   111篇
  2002年   99篇
  2001年   66篇
  2000年   75篇
  1999年   66篇
  1998年   61篇
  1997年   41篇
  1996年   46篇
  1995年   41篇
  1994年   39篇
  1993年   33篇
  1992年   25篇
  1991年   33篇
  1990年   17篇
  1989年   20篇
  1988年   17篇
  1987年   14篇
  1986年   21篇
  1985年   22篇
  1984年   25篇
  1983年   20篇
  1982年   13篇
  1981年   22篇
  1980年   11篇
  1979年   16篇
  1978年   6篇
  1976年   6篇
  1975年   4篇
  1973年   5篇
排序方式: 共有4645条查询结果,搜索用时 15 毫秒
991.
Diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) have been identified in bovine adrenal medullary tissue using an HPLC method. The values obtained were 0.1 +/- 0.05 mumol/g of tissue for both compounds. The subcellular fraction where Ap4A and Ap5A were present in the highest concentration was chromaffin granules: 32 nmol/mg of protein for both compounds (approximately 6 mM intragranularly). This value was 30 times higher than in the cytosolic fraction. Enzymatic degradation of Ap4A and Ap5A, isolated from chromaffin granules, with phosphodiesterase produces AMP as the final product. The Ap4A and Ap5A obtained from this tissue were potent inhibitors of adenosine kinase. Their Ki values relative to adenosine were 0.3 and 2 microM for Ap4A and Ap5A, respectively. The cytosolic fraction also contains enzymatic activities that degrade Ap4A as well as Ap5A. These activities were measured by an HPLC method; the observed Km values were 10.5 +/- 0.5 and 13 +/- 1 microM for Ap4A and Ap5A, respectively.  相似文献   
992.
Frost resistance of leaves of holly ( Ilex aquifolium L.) increased from about −9°C in late summer to −24°C in mid-winter. The gradual rise in cold hardiness occurred when the minimum air temperature dropped to 0°C or below and was closely related to increase in the cellular sap concentration. Predominantly, the decrease in the osmotic potential of the cellular sap was caused by sugar accumulation, mainly of sucrose. The capacity of net photosynthesis of the leaves, as well as the total lipid and protein content and the proportion of individual lipids of the thylakoid membranes, did not significantly change during cold acclimation. The gradual shift towards desaturation in the fatty acids of the thylakoid lipids during the hardening period was neither correlated with alterations in the frost resistance nor did it affect the potential efficiency for various light-induced chloroplast membrane reactions such as linear photosynthetic electron transport, photophosphorylation and the proton gradient (ΔpH). It is suggested that in holly leaves reduction in cell volume changes during freeze-thawing and cryoprotection by sugars could play a dominant role for the increase in frost resistance. Seasonal changes in the degree of unsaturation of polar lipids of the thylakoids could contribute to maintain optimal functional efficiency of the membranes at low temperatures rather than to avoid freezing damage.  相似文献   
993.
Summary A variety of 2-arylthio-N-alkylmaleimides were prepared, and their antimicrobial activities were examined. Almost all of these compounds exhibited antibacterial activity against Gram-positive bacteria such asBacillus subtilis andStaphylococcus aureus. Some compounds such as 2-(halogeno-phenyl)-thio-N-methylmaleimides (4, 5, 6, 8 and 10) and 2-(2-carbamoylphenyl)thio-N-methylmaleimide(35) exhibited antibacterial activity againstEscherichia coli. All compounds tested were inactive againstPseudomonas aeruginosa except 2-(2-carbamoylphenyl)thio-N-methylmaleimide(35) which was marginally active. Activities against Gram-positive bacteria were not due to the effect of the substituent on the benzene ring, except in the instances 2-carboxy, 2-carbomethoxy, 2-amino groups and alkyl chains, however, activities against Gram-negative bacteria were due to phenylthio and the alkyl substituents. Some of 2-arylthio-N-alkylmaleimides were examined for their antifungal activities using eight strains of fungi, and they showed activity against these.  相似文献   
994.
Naringenin is a naturally occurring flavonoid and due to its broad spectrum of biological activities, including anticancer properties, has attracted scientific attention in recent years. To contribute to these studies, we synthesized some new (±)‐naringenin cyclic aminoethyl derivatives, analyzed the cytotoxic and anti‐proliferative properties of them via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) assay, and mitochondrial apoptosis signaling response and gene expressions belong to caspase‐3 depended apoptosis as biomarkers in both healthy and cancer cell lines. Our results suggest that some of our naringenin derivatives are potential anticancer agents with a selective death potential and targeting properties for mitochondrial apoptosis signaling against at least human cervix and breast cancer.  相似文献   
995.

Background

Macrophage inhibitory factor (MIF) is a pro‐inflammatory cytokine modulating monocyte motility and a pleiotropic regulator of different biological and cellular processes. The MIF‐173G/C (rs755622) polymorphism is found in the promoter region and affects its activity. The present study investigated the MIF polymorphism as a risk factor for the development of acute lymphoblastic leukemia (ALL) in Egyptian children.

Methods

We analyzed the MIF‐173G/C (rs755622) polymorphism in 180 ALL cases and 150 healthy control children by amplification of the gene using a polymerase chain reaction followed by restriction endonuclease digestion and running on an agarose gel for visualization of the product.

Results

We found a significant incidence of the homozygous polymorphic (CC) genotype and the combined polymorphic genotypes (GC + CC) in ALL patients compared to healthy controls (p = 0.001 and p = 0.007, respectively), whereas the wild‐type genotype (GG) was more common in healthy controls (p = 0.006). Multivariate logistic regression analysis adjustment for MIF different genotypes and other potential risk factors such as age, sex and parental smoking indicated that the CC genotype is the only significant risk factor for the test (p = 0.02). We also noted that, by increasing the C‐allele representation within the gene [GC, CC], there was an increase in total leukocytic count (p = 0.09 and p = 0.001, respectively) that may reflect the bad prognostic impact of the polymorphic allele, although further studies are needed.

Conclusions

The results of the present study indicate that the MIF‐173G/C (rs755622) polymorphism is a risk factor for childhood ALL development with respect to both homozygous and combined polymorphic genotypes. In addition, the increased leukocytic count in synchronization with the increased representation of the polymorphic C‐allele may reflect its bad prognostic impact.  相似文献   
996.
Lambertellin (1) and ergosta-5,7,22-trien-3-ol (2) were isolated from the solid rice fermentation of the plant pathogenic fungus Pycnoporus sanguineus MUCL 51321. Their structures were elucidated using comprehensive spectroscopic methods. The isolated compounds were tested on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Lambertellin (1) exhibited promising inhibitory activity against nitric oxide (NO) production with IC50 value of 3.19 µM, and it significantly inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Lambertellin (1) also decreased the expression of pro-inflammatory cytokines IL-6 and IL-1β. The study of the mechanistic pathways revealed that lambertellin (1) exerts its anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophage cells by modulating the activation of the mitogen activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. Therefore, lambertellin (1) could be a promising lead compound for the development of new anti-inflammatory drugs.  相似文献   
997.
A novel tetrahydrofuran derivative, trigonohowine (1), together with five known tetrahydrofuran derivatives (26), were isolated from the stems and leaves of Trigonostemon howii. The structure of 1 was elucidated by extensive spectroscopic methods and the known compounds were identified by comparisons with the data reported in literature. Among them, trigonohowine (1) represents the first example of a new type of tetrahydrofuran derivative, possessing an unprecedented carbon skeleton containing 23 carbon atoms on the carbon skeleton and the known compouds (26) are rare tetrahydrofuran derivatives in the plant kingdom with various carbon skeletons. All isolated compounds were evaluated for their anti-HIV-1 activities. Compounds 16 showed significant anti-HIV-1 activities with EC50 ranged from 0.08 to 1.03 µM. These findings suggest that the discoveries of these tetrahydrofuran derivatives with significant anti-HIV-1 activities isolated from T. howii could be of great importance to the development of new anti-HIV agents.  相似文献   
998.
Metabolic reprogramming of cells from the innate immune system is one of the most noteworthy topics in immunological research nowadays. Upon infection or tissue damage, innate immune cells, such as macrophages, mobilize various immune and metabolic signals to mount a response best suited to eradicate the threat. Current data indicate that both the immune and metabolic responses are closely interconnected. On account of its peculiar position in regulating both of these processes, the mitochondrion has emerged as a critical organelle that orchestrates the coordinated metabolic and immune adaptations in macrophages. Significant effort is now underway to understand how metabolic features of differentiated macrophages regulate their immune specificities with the eventual goal to manipulate cellular metabolism to control immunity. In this review, we highlight some of the recent work that place cellular and mitochondrial metabolism in a central position in the macrophage differentiation program.  相似文献   
999.
The effects of desflurane on endothelium-dependent vasodilation remain uncertain, whereas sevoflurane is known to inhibit it. Endothelium-dependent vasodilation is mainly mediated by endothelial nitric oxide synthase. The effects of desflurane on endothelium-dependent vasodilation were compared with those of sevoflurane, and inhibition mechanisms, including phosphorylation of endothelial nitric oxide synthase and the calcium pathway, were evaluated for the two anesthetics. We hypothesized that desflurane would inhibit endothelium-dependent vasodilation in a concentration-dependent manner more than sevoflurane, with inhibition of a calcium pathway.Isolated rat aortic rings were randomly assigned to treatment with desflurane or sevoflurane for measurements of the vasodilation ratio. To determine NO production with desflurane and sevoflurane, an in vitro assay was performed with cultured bovine aortic endothelial cells. These cells were also used for measurement of intracellular calcium or Western blotting.For endothelium-dependent vasodilation, the ratio of vasodilation was more significantly inhibited by 11.4% desflurane than by 4.8% sevoflurane. Inhibition did not between 5.7% desflurane and 2.4% sevoflurane. No inhibitory effect of desflurane or sevoflurane was observed in endothelium-denuded aorta. Desflurane inhibited nitric oxide production caused by stimulation of bradykinin significantly more than sevoflurane. Desflurane had a greater suppressive effect on the bradykinin-induced increase in intracellular calcium concentration than did sevoflurane. Sevoflurane, but not desflurane, inhibited phosphorylation of the serine 1177 residue by bradykinin stimulation.Desflurane inhibited endothelium-dependent vasodilation more than sevoflurane through inhibition of a calcium pathway. Sevoflurane inhibited endothelium-dependent vasodilation by inhibition of phosphorylation of the serine 1177 residue of endothelial nitric oxide synthase.  相似文献   
1000.
Lignocellulose pretreatment produces various toxic inhibitors that affect microbial growth, metabolism, and fermentation. Zymomonas mobilis is an ethanologenic microbe that has been demonstrated to have potential to be used in lignocellulose biorefineries for bioethanol production. Z. mobilis biofilm has previously exhibited high potential to enhance ethanol production by presenting a higher viable cell number and higher metabolic activity than planktonic cells or free cells when exposed to lignocellulosic hydrolysate containing toxic inhibitors. However, there has not yet been a systematic study on the tolerance level of Z. mobilis biofilm compared to planktonic cells against model toxic inhibitors derived from lignocellulosic material. We took the first insight into the concentration of toxic compound (formic acid, acetic acid, furfural, and 5‐HMF) required to reduce the metabolic activity of Z. mobilis biofilm and planktonic cells by 25% (IC25), 50% (IC50), 75% (IC75), and 100% (IC100). Z. mobilis strains ZM4 and TISTR 551 biofilm were two‐ to three fold more resistant to model toxic inhibitors than planktonic cells. Synergetic effects were found in the presence of formic acid, acetic acid, furfural, and 5‐HMF. The IC25 of Z. mobilis ZM4 biofilm and TISTR 551 biofilm were 57 mm formic acid, 155 mm acetic acid, 37.5 mm furfural and 6.4 mm 5‐HMF, and 225 mm formic acid, 291 mm acetic acid, 51 mm furfural and 41 mm 5‐HMF, respectively. There was no significant difference found between proteomic analysis of the stress response to toxic inhibitors of Z. mobilis biofilm and planktonic cells on ZM4. However, TISTR 551 biofilms exhibited two proteins (molecular chaperone DnaK and 50S ribosomal protein L2) that were up‐regulated in the presence of toxic inhibitors. TISTR 551 planktonic cells possessed two types of protein in the group of 30S ribosomal proteins and motility proteins that were up‐regulated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号