首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9235篇
  免费   624篇
  国内免费   45篇
  9904篇
  2023年   90篇
  2022年   113篇
  2021年   158篇
  2020年   140篇
  2019年   229篇
  2018年   201篇
  2017年   161篇
  2016年   174篇
  2015年   229篇
  2014年   365篇
  2013年   492篇
  2012年   290篇
  2011年   496篇
  2010年   414篇
  2009年   519篇
  2008年   519篇
  2007年   543篇
  2006年   511篇
  2005年   532篇
  2004年   589篇
  2003年   463篇
  2002年   431篇
  2001年   197篇
  2000年   185篇
  1999年   170篇
  1998年   189篇
  1997年   193篇
  1996年   138篇
  1995年   147篇
  1994年   119篇
  1993年   124篇
  1992年   111篇
  1991年   79篇
  1990年   46篇
  1989年   47篇
  1988年   36篇
  1987年   38篇
  1986年   29篇
  1985年   51篇
  1984年   66篇
  1983年   47篇
  1982年   58篇
  1981年   37篇
  1980年   24篇
  1979年   25篇
  1978年   18篇
  1977年   12篇
  1976年   10篇
  1975年   11篇
  1974年   13篇
排序方式: 共有9904条查询结果,搜索用时 0 毫秒
991.
Based on previous studies of interleukin-1beta (IL-1beta) and both acidic and basic fibroblast growth factors (FGFs), it has been suggested that the folding of beta-trefoil proteins is intrinsically slow and may occur via the formation of essential intermediates. Using optical and NMR-detected quenched-flow hydrogen/deuterium exchange methods, we have measured the folding kinetics of hisactophilin, another beta-trefoil protein that has < 10% sequence identity and unrelated function to IL-1beta and FGFs. We find that hisactophilin can fold rapidly and with apparently two-state kinetics, except under the most stabilizing conditions investigated where there is evidence for formation of a folding intermediate. The hisactophilin intermediate has significant structural similarities to the IL-1beta intermediate that has been observed experimentally and predicted theoretically using a simple, topology-based folding model; however, it appears to be different from the folding intermediate observed experimentally for acidic FGF. For hisactophilin and acidic FGF, intermediates are much less prominent during folding than for IL-1beta. Considering the structures of the different beta-trefoil proteins, it appears that differences in nonconserved loops and hydrophobic interactions may play an important role in differential stabilization of the intermediates for these proteins.  相似文献   
992.
Summary The probable conformations of two cyclic enkephalin analogs, DNS-cyclo[d-Dab-Gly-Trp-Leu] (I) and DNS-cyclo[d-Dab-Gly-Trp-d-Leu] (II) (DNS=dansyl), were determined by combining the results of NOE, vicinal coupling constant and fluorescence energy transfer measurements with theoretical calculations. The common feature of the conformations for both peptides is the presence of a β-turn at residues 2 and 3.  相似文献   
993.
Summary In a previous communication we reported the racemic synthesis of the cis peptide bond mimic α-benzyl-o-aminomethylphenylacetic acid and its incorporation in the cyclic somatostatin analoguesc[α(R andS)Bn-o-AMPA-Phe7-d-Trp8-Lys9-Thr10]. Since the epimeric peptides exhibit different binding affinities, we completed the structure-activity study with an asymmetric synthesis. A model for the solution conformation ofc[α(R andS)Bn-o-AMPA-Phe7-d-Trp8-Lys9-Thr10] is proposed on the basis of a 2D NMR study in CD3OH and restrained molecular dynamics.  相似文献   
994.
Many studies have documented the individual effects of variables such as vegetation, long‐term climate and short‐term weather on biodiversity. Few, however, have explicitly explored how interactions among these major drivers can influence species abundance. We used data from a 15‐year study (2002–2017) in the endangered temperate woodlands of south‐eastern Australia to test hypotheses associated with the effects of vegetation type, long‐term climate and short‐term weather on population trajectories of seven species of (largely) nocturnal mammals and birds. Despite prolonged drought conditions, there was a significant increase in the abundance of some species over time (e.g. the Eastern Grey Kangaroo). It is possible that destocking of domestic livestock may have reduced competition with Kangaroos, thereby facilitating increases in abundance. The Common Brushtail Possum and Common Ringtail Possum were significantly less likely to occur in replanted woodlands, possibly because of the paucity of nesting sites. We found no evidence that replanted woodlands are refuges for exotic pest species like the European Rabbit and Red Fox. Short‐ and long‐term rainfall and vegetation type had important independent and combined effects on animal abundance. That is, responses to periods of high short‐term rainfall were dependent on vegetation type and whether sites occurred in long‐term climatically wet versus climatically dry locations. For example, the Red Fox responded positively to high levels of short‐term rainfall, but only at climatically dry sites. Our results highlight the complementary value of different vegetation types across the landscape and the context‐specific responses of animals to short‐term fluctuations in moisture availability. They also underscore the value of long‐term monitoring at a landscape scale for examining how multiple interacting factors influence trends in animal abundance.  相似文献   
995.
Wedemeyer WJ  Baker D 《Proteins》2003,53(2):262-272
Angular potentials play an important role in the refinement of protein structures through angle-dependent restraints (e.g., those determined by cross-correlated relaxations, residual dipolar couplings, and hydrogen bonds). Analytic derivatives of such angular potentials with respect to the dihedral angles of proteins would be useful for optimizing such restraints and other types of angular potentials (i.e., such as we are now introducing into protein structure prediction) but have not been described. In this article, analytic derivatives are calculated for four types of angular potentials and integrated with the efficient recursive derivative calculation methods of Gō and coworkers. The formulas are implemented in publicly available software and illustrated by refining a low-resolution protein structure with idealized vector-angle, dipolar-coupling, and hydrogen-bond restraints. The method is now being used routinely to optimize hydrogen-bonding potentials in ROSETTA.  相似文献   
996.
Spiders synthesize several kinds of silk fibers. In the primary structure of spider silk, one of the major ampullate (dragline, frame) silks, spidroin 1, and flagelliform silk (core fibers of adhesive spiral), there are common repeated X-Gly-Gly (X = Ala, Leu, Pro, Tyr, Glu, and Arg) sequences, which are considered to be related to the elastic character of these fibers. In this paper, two dimensional spin diffusion solid-state NMR under off magic angle spinning (OMAS), 13C chemical shift contour plots, and Rotational Echo DOuble Resonance (REDOR) were applied to determine the torsion angles of one Ala and two kinds of Gly residues in the Ala-Gly-Gly sequence of 13C=O isotope-labeled (Ala-Gly-Gly)10. The torsion angles were determined to be (, ) = (–90°, 150° ) within an experimental error of ±10° for each residue. This conformation is characterized as 31 helix which is in agreement with the structure proposed from the X-ray powder diffraction pattern of poly(Ala-Gly-Gly). The 31 helix of (Ala-Gly-Gly)10 does not change by formic acid treatment although (Ala-Gly)15 easily changes from the silk I conformation (the structure of Bombyx mori silk fibroin before spinning in the solid state) to silk II conformation (the structure of the silk fiber after spinning) by such treatment. Thus, the 31 helix conformation of (Ala-Gly-Gly)10 is considered very stable. Furthermore, the torsion angles of the 16th Leu residue of (Leu-Gly-Gly)10 were also determined as (, ) = (–90°, 150° ) and this peptide is also considered to take 31 helix conformation.  相似文献   
997.
998.
Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While crystal structures of the water-soluble ectodomains of many viral fusion proteins have been determined, the structure and assembly of the C-terminal transmembrane domain (TMD) remains poorly understood. Here we use solid-state NMR to determine the backbone conformation and oligomeric structure of the TMD of the parainfluenza virus 5 fusion protein. 13C chemical shifts indicate that the central leucine-rich segment of the TMD is α-helical in POPC/cholesterol membranes and POPE membranes, while the Ile- and Val-rich termini shift to the β-strand conformation in the POPE membrane. Importantly, lipid mixing assays indicate that the TMD is more fusogenic in the POPE membrane than in the POPC/cholesterol membrane, indicating that the β-strand conformation is important for fusion by inducing membrane curvature. Incorporation of para-fluorinated Phe at three positions of the α-helical core allowed us to measure interhelical distances using 19F spin diffusion NMR. The data indicate that, at peptide:lipid molar ratios of ~ 1:15, the TMD forms a trimeric helical bundle with inter-helical distances of 8.2–8.4 Å for L493F and L504F and 10.5 Å for L500F. These data provide high-resolution evidence of trimer formation of a viral fusion protein TMD in phospholipid bilayers, and indicate that the parainfluenza virus 5 fusion protein TMD harbors two functions: the central α-helical core is the trimerization unit of the protein, while the two termini are responsible for inducing membrane curvature by transitioning to a β-sheet conformation.  相似文献   
999.
Many important ecological management issues can only be addressed by long‐term monitoring or through studies carried out over extended periods. But such studies require institutional settings that ensure funding is sustained and that data arising from these studies are securely managed. Recent experience suggests both are difficult to achieve. This is because management agencies and research bodies are periodically restructured, especially in recent years. This has often led to long‐term work being terminated. But there is anecdotal evidence that the data collected in at least some of these studies are not always lost. Instead, it can remain stored in the back rooms of agencies or in the personal files of former staff. Such data are clearly at risk; with time fewer people remain aware of the work or of the existence of data that were collected, thereby increasing the likelihood that the information will eventually disappear. This seems a waste. Securing funds for any long‐term ecological study is always likely to be difficult, and many of these previous long‐term studies are likely to be relevant to some of our present management problems. One approach to taking advantage of these earlier studies would be to ask scientific and professional associations to survey their older members to identify relevant previous investigations. But any re‐establishment of former studies will require the creation of new institutional arrangements, more robust institutional memories and sufficient funds that are able to sustain any resurrected investigations into the future.  相似文献   
1000.
Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size‐density fractionation and solid‐state 13C‐NMR spectroscopy to explore the extent to which declines in microbial decay in a long‐term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N‐alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine‐texture forest soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号