首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9234篇
  免费   625篇
  国内免费   45篇
  2023年   90篇
  2022年   113篇
  2021年   158篇
  2020年   140篇
  2019年   229篇
  2018年   201篇
  2017年   161篇
  2016年   174篇
  2015年   229篇
  2014年   365篇
  2013年   492篇
  2012年   290篇
  2011年   496篇
  2010年   414篇
  2009年   519篇
  2008年   519篇
  2007年   543篇
  2006年   511篇
  2005年   532篇
  2004年   589篇
  2003年   463篇
  2002年   431篇
  2001年   197篇
  2000年   185篇
  1999年   170篇
  1998年   189篇
  1997年   193篇
  1996年   138篇
  1995年   147篇
  1994年   119篇
  1993年   124篇
  1992年   111篇
  1991年   79篇
  1990年   46篇
  1989年   47篇
  1988年   36篇
  1987年   38篇
  1986年   29篇
  1985年   51篇
  1984年   66篇
  1983年   47篇
  1982年   58篇
  1981年   37篇
  1980年   24篇
  1979年   25篇
  1978年   18篇
  1977年   12篇
  1976年   10篇
  1975年   11篇
  1974年   13篇
排序方式: 共有9904条查询结果,搜索用时 15 毫秒
91.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of a murine hybridoma cell line at two feed glutamine concentrations, 4.0 and 1.7 mM. Carbon-13 labeling patterns were used in conjunction with nutrient uptake rates to calculate the metabolic fluxes through the glycolytic pathway, the pentose shunt, the malate shunt, lipid biosynthesis, and the tricarboxylic acid (TCA) cycle. Decreasing the feed glutamine concentration significantly decreased glutamine uptake but had little effect on glucose metabolism. A significant incrase in antibody productivity occurred upon decreasing the feed glutamine level. The increased antibody productivity in concert with decreased glutamine uptake and no apparent change in glucolytic metabolism suggests that antibody production was not energy limited. Metabolic flux calculations indicate that (1) approximately 92% of the glucose consumed proceeds directly through glycolysis with 8% channeled through the pentose shunt; (2) lipid biosynthesis appears to be greater than malate shunt activity; and (3) considerable exchange occurs between TCA cycle intermediates and amino acid metabolic pools, leading to substantial loss of (13)C label from the TCA cycle. These results illustrate that (13)NMR spectroscopy is a powerfulf tool in the calculation of metabolic fluxes, particularly for exchange pathways where no net flux occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   
92.
Tri-1-alkynyltin compounds [R2Sn(CCR1)3 (1), R2 = Me, R1 = Me (a), nBu (b), tBu (c), Me3Si (d), 1-(1-cyclohexenyl) (e); R2 = Et, R1 = Me (a(Et)), nBu (b(Et)), tBu (c(Et)), SiMe3 (d(Et)); R2 = nBu, R1 = Me (a(Bu)), nBu (b(Bu))] were prepared, and their reactivity towards trialkylboranes Et3B (2) and iPr3B (3) in 1,1-organoboration reactions was studied. The first step in each reaction is an intermolecular 1,1-alkytoboration. Afterwards, intramolecular 1,1-vinyloboration or 1,1-alkyloboration compete with further intermolecular 1,1-alkyloboration. Various triorganotin cations (4-7), stabilized by intramolecular side-on coordination to the CC bond of an alkynylborate moiety, were detected as highly fluxional intermediates prior to rearrangement into heterocyclic systems such as stannoles (9-11), 1-stanna-4-bora-2, 5-cyclohexadienes (8, 12). The reactions between 1a or 1a(Bu) and an excess of Et3B (2) afford the tris(alkenyl)tin compounds 13 via threefold intermolecular 1, 1-ethyloboration. 13 rearrange to the 3-stannolenes (14a or 14a(Bu)). The intermediates and final products were characterized by multinuclear one- and two-dimensional 1H, 11B, 13C, 29Si and 119Sn NMR.  相似文献   
93.
Although the sensitivity of the plasma membrane H+-ATPase to vanadate is well known, the metabolic response of plant cells to vanadate is less well characterised in vivo and its use as an inhibitor in whole plant experiments has had mixed success. Experiments with maize (Zea mays, L.) roots and with purified plasma membrane fractions from the same tissues showed that exposure to vanadate caused: (i) a reduction in the capacity for phosphate uptake; (ii) a reduction in the extractable ATPase activity from the tissue; and (iii) a significant increase in the ATP level. The measurements on the extractable ATPase activity and the ATP level showed that the effect of vanadate developed slowly, apparently reflecting the slow accumulation of intracellular vanadate. The marked effect of vanadate on the ATP level-exposure to 500 M vanadate for 5 h doubled the ATP content of the roots tips-indicates that there is no stringent control over the ATP level in the roots and that the plasma membrane H+-ATPase activity is likely to have a significant role in determining the ATP level under normal conditions.  相似文献   
94.
A triad of interacting group (TyrOH? His$ \underline\ominus$O2C) in angiotensin II (ANG II) has been postulated to create the tyrosinate anion pharmacophore (tyanophore) responsible for receptor activation/triggering (Biochim. Biophys. Acta 1991, 1065, 21). In the present study we investigated the effects on bioactivity of substituting the Tyr4 residue in [Sar1]ANG II with other anionic or electronegative amino acids, and with a number of aromatic amino acids lacking a hydroxyl group. [Sar1 Nva(δ-OH)4]ANG II, [Sar1 Nva(δ-OCH3)4]ANG II, [Sar1 Met4]ANG II, [Sar1 Gln4]ANG II, [Sar1 Glu4]ANG II and [Sar1 DL -Alg4]ANG II had agonist activities in the rat isolated uterus assay of 4, 3, 19, 10, > 0.1 and > 0.1%, respectively, of that of ANG II. [Sar1 Nal4]ANG II, [Sar1 Pal4]ANG II, [Sar1 DL -Phg(4′-F)4]ANG II, [Sar1 Phe(4′-F)4]ANG II, [Sar1 Phe(F5)4]ANG II and [Sar1 His4]ANG II had agonist activities of 4.5, 7, < 0.1, 0.2, 1 and 0.6%, respectively. All peptides investigated were devoid of measurable antagonist activity except [Sar1] Phe(4′-F)4 ANG II (pA2 = 7.7). These findings illustrate that anionic or electronegative aliphatic side chains replacing tyrosinate at position 4 can partially activate the angiotension receptor. For ANG II analogues containing an aromatic amino acid other than Tyr at position 4, ligand binding and agonist activity are not dependent on the electronegativity or dipole moment of the aromatic ring, or on the ability of the 4′ ring substituent to accept a proton. Modelling based on ab initio calculations of aromatic ring multipoles illustrate that the apparent binding affinity (PA2) of ANG II analogues is associated with a perpendicular electrostatic interaction of the position 4 aromatic ring with a receptor-based group. In addition, intramolecular interactions providing for the conformation of the ligand as it approaches its receptor appear to have a role in determining agonist vs antagonist activity.  相似文献   
95.
In the folding of bovine pancreatic trypsin inhibitor (BPTI), the single-disulfide intermediate [30-51] plays a key role. We have investigated a recombinant analog of [30-51] using a 2-dimensional nuclear magnetic resonance (2D-NMR). This recombinant analog, named [30-51]Ala, contains a disulfide bond between Cys-30 and Cys-51, but contains alanine in place of the other cysteines in BPTI to prevent the formation of other intermediates. By 2D-NMR, [30-51]Ala consists of 2 regions-one folded and one predominantly unfolded. The folded region resembles a previously characterized peptide model of [30-51], named P alpha P beta, that contains a native-like subdomain with tertiary packing. The unfolded region includes the first 14 N-terminal residues of [30-51] and is as unfolded as an isolated peptide containing these residues. Using protein dissection, we demonstrate that the folded and unfolded regions of [30-51]Ala are structurally independent. The partially folded structure of [30-51]Ala explains many of the properties of authentic [30-51] in the folding pathway of BPTI. Moreover, direct structural characterization of [30-51]Ala has revealed that a crucial step in the folding pathway of BPTI coincides with the formation of a native-like subdomain, supporting models for protein folding that emphasize the formation of cooperatively folded subdomains.  相似文献   
96.
The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein.  相似文献   
97.
Proton NMR experiments were carried out on apomyoglobin from sperm whale and horse skeletal muscle. Two small molecules, the paramagnetic relaxation agent 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO) and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid (ANS), were used to alter and simplify the spectrum. Both were shown to bind in the heme pocket by docking onto the hydrophobic residues lining the distal side. Only 1 extensive region of the apoprotein structure, composed of hydrophobic residues, is not affected by HyTEMPO. It includes the 2 tryptophans (located in the A helix), other nonpolar residues of the A helix and side chains from the E, G, and GH helices. The spectral perturbations induced by ANS allowed assignment of the distal histidine (His-64) in horse apomyoglobin. This residue was previously reported to titrate with a pKa below 5 and tentatively labeled as His-82 on the basis of this value (Cocco MJ, Kao YH, Phillips AT, Lecomte JTJ, 1992, Biochemistry 31:6481-6491). The packing of the side chains and the low pKa of His-64 reinforce the idea that the distal side of the binding site is folded in a manner closely related to that in the holoprotein. ANS was found to sharpen the protein signals and the improvement of the spectral resolution facilitated the assignment of backbone amide resonances. Secondary structure, as manifested in characteristic inter-amide proton NOEs, was detected in the A, B, C, E, G, and H helices. The combined information on the hydrophobic cores and the secondary structure composes an improved representation of the native state of apomyoglobin.  相似文献   
98.
The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand.  相似文献   
99.
The 3-dimensional structure of the pheromone Er-1 isolated from the ciliated protozoan Euplotes raikovi has been determined in aqueous solution by 1H NMR spectroscopy. The structure of this 40-residue protein was calculated with the distance geometry program DIANA on the basis of 503 upper distance constraints derived from nuclear Overhauser effects and 77 dihedral angle constraints derived from spin-spin coupling constants, and refined by restrained energy minimization with the program OPAL. The Er-1 solution structure is represented by a group of 20 conformers with an average RMS deviation relative to the mean structure of 0.55 A for the backbone atoms N, C alpha, and C', and 0.93 A for all heavy atoms of the complete polypeptide chain, residues 1-40. The molecular architecture is dominated by an up-down-up bundle of 3 alpha-helices formed by residues 2-9, 12-19, and 24-33. Although this core part coincides closely with the previously determined structure of the homologous pheromone Er-10, the C-terminal peptide segment adopts a novel conformation. This is of interest in view of previous suggestions, based on sequence comparisons, that this molecular region may be important for the different specificity of receptor recognition by different pheromones.  相似文献   
100.
The DNA binding domain (DBD) of gamma delta resolvase (residues 141-183) is responsible for the interaction of this site-specific DNA recombinase with consensus site DNA within the gamma delta transposable element in Escherichia coli. Based on chemical-shift comparisons, the proteolytically isolated DBD displays side-chain interactions within a hydrophobic core that are highly similar to those of this domain when part of the intact enzyme (Liu T, Liu DJ, DeRose EF, Mullen GP, 1993, J Biol Chem 268:16309-16315). The structure of the DBD in solution has been determined using restraints obtained from 2-dimensional proton NMR data and is represented by 17 conformers. Experimental restraints included 458 distances based on analysis of nuclear Overhauser effect connectivities, 17 phi and chi 1 torsion angles based on analysis of couplings, and 17 backbone hydrogen bonds determined from NH exchange data. With respect to the computed average structure, these conformers display an RMS deviation of 0.67 A for the heavy backbone atoms and 1.49 A for all heavy atoms within residues 149-180. The DBD consists of 3 alpha-helices comprising residues D149-Q157, S162-T167, and R172-N183. Helix-2 and helix-3 form a backbone fold, which is similar to the canonical helix-turn-helix motif. The conformation of the NH2-terminal residues, G141-R148, appears flexible in solution. A hydrophobic core is formed by side chains donated by essentially all hydrophobic residues within the helices and turns. Helix-1 and helix-3 cross with a right-handed folding topology. The structure is consistent with a mechanism of DNA binding in which contacts are made by the hydrophilic face of helix-3 in the major groove and the amino-terminal arm in the minor groove. This structure represents an important step toward analysis of the mechanism of DNA interaction by gamma delta resolvase and provides initial structure-function comparisons among the divergent DBDs of related resolvases and invertases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号