首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4813篇
  免费   68篇
  国内免费   50篇
  2023年   17篇
  2022年   27篇
  2021年   38篇
  2020年   45篇
  2019年   53篇
  2018年   59篇
  2017年   47篇
  2016年   62篇
  2015年   171篇
  2014年   484篇
  2013年   414篇
  2012年   495篇
  2011年   600篇
  2010年   387篇
  2009年   153篇
  2008年   121篇
  2007年   130篇
  2006年   130篇
  2005年   111篇
  2004年   137篇
  2003年   131篇
  2002年   90篇
  2001年   61篇
  2000年   85篇
  1999年   66篇
  1998年   82篇
  1997年   85篇
  1996年   80篇
  1995年   93篇
  1994年   85篇
  1993年   47篇
  1992年   43篇
  1991年   35篇
  1990年   30篇
  1989年   22篇
  1988年   22篇
  1987年   19篇
  1986年   16篇
  1985年   21篇
  1984年   30篇
  1983年   22篇
  1982年   30篇
  1981年   17篇
  1980年   10篇
  1979年   13篇
  1978年   3篇
  1977年   4篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有4931条查询结果,搜索用时 31 毫秒
71.
Summary The present study has been carried out to determine if glycine, an allosteric modulator of NMDA receptor, is involved in the vascular effect induced by the activation of the CNS NMDA receptors.Icv NMDA (from 0.01 to 1µg/rat in the 3rd ventricle) caused a significant increase in arterial blood pressure in conscious freely moving rats. Moreover, the hypertension was associated with behavioural modifications (jumping, rearing, teething and running). Glycine pretreatment (1 and 10µg/raticv), significantly increased the NMDA hypertension. Glycine alone did not cause any arterial blood pressure modification while it induced a slight sedation. HA-966 (an antagonist of the glycine site on NMDA receptor) administration (1–10µg/raticv 5 min before glycine) significantly antagonized the glycine effects on NMDA hypertension.Alone HA-966 neither modified arterial blood pressure nor antagonized NMDA hypertension. In conclusion, our investigations confirm NMDA receptor involvement in cardiovascular function and they demonstrate thatin vivo glycine positively modulates NMDA receptors.  相似文献   
72.
Neuronal apoptosis versus necrosis induced by glutamate or free radicals   总被引:3,自引:0,他引:3  
The type of cell death encountered in neuronal cell cultures exposed to excitatory amino acids — such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO.) and superoxide anoin (O2. ), which react to form peroxynitrite (ONOO) — appears to depend on the intensity of the exposure and may involve two temporarily distinct phases. Following relatively fulminant insults, an initial phase of necrosis — associated with extreme energy depletion — may simply reflect the failure of neurons to carry out the default apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons recovering mitochondrial energy potential after an initial fulminant insult or following a more subtle inciting injury may subsequently undergo apoptosis, possibly associated with a factor released from mitochondria that triggers this death program. The maintenance of balanced energy production may be a decisive factor in detemining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Similar events could possibly occur in vivo after ischemia or other insults.  相似文献   
73.
光亲和标记鉴定玉米根脱落酸结合蛋白   总被引:1,自引:0,他引:1  
光亲和标记鉴定玉米根脱落酸结合蛋白吴忠义,陈珈,朱美君(北京农业大学生物学院,100094)关键词结合蛋白;光亲和标记;ABA;受体;微粒体脱落酸(ABA)作为一大类植物激素,在高等植物的生长发育以及对逆境的适应过程中发挥着重要作用。在探讨激素作用的...  相似文献   
74.
Abstract: Evidence from in vitro studies suggests that excitotoxic neuronal degeneration can occur by either an acute or delayed mechanism. Studies of the acute mechanism in isolated chick embryo retina using histological methods indicate that this process is rapidly triggered by activation of glutamate receptors of either the N-methyl-d -aspartate (NMDA) or non-NMDA subtypes. The delayed mechanism, studied primarily in cortical and hippocampal cell cultures prepared from embryonic rodent brain, requires activation of NMDA receptors. In these cell culture systems, stimulation of non-NMDA receptors does not rapidly trigger delayed neuronal degeneration, or does so only indirectly, via activation of NMDA receptors secondary to glutamate release. To provide a more valid basis for comparison of these two mechanisms, we have modified the isolated chick embryo retina model to permit studies of delayed as well as acute excitotoxic neurodegeneration. Retinas maintained for 24 h exhibited no morphological or biochemical signs of damage. Retinal damage was assessed by measuring lactate dehydrogenase (LDH) present in the medium at various times after exposure to agonists and normalized to total LDH in each retina. Glutamate exposure (1 mM, 30 min) did not result in LDH release by the end of the exposure period, but LDH was released over the following 24 h. Briefer periods also led to substantial LDH release. Incubation in the presence of NMDA, or the non-NMDA agonists kainate (KA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), led rapidly to delayed LDH release. NMDA and AMPA were more potent than glutamate, but high concentrations of glutamate led to more LDH release than high concentrations of these agonists. KA was a powerful excitotoxin, providing more LDH release than glutamate, NMDA, or AMPA at every concentration tested. The delayed LDH release induced by glutamate involved activation of both NMDA and non-NMDA receptors, as a combination of receptor-selective antagonists was necessary to provide complete blockade. These results indicate that glutamate, NMDA, AMPA, and KA all cause delayed as well as acute excitotoxic damage in the retina. It is interesting that brief exposure to the non-NMDA receptor agonists, in relatively low concentrations, led to delayed LDH release. This is different than in other in vitro models of delayed excitotoxic neurodegeneration.  相似文献   
75.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   
76.
Calcitonin gene-related peptide and its receptor in the thymus   总被引:2,自引:0,他引:2  
Calcitonin gene-related peptide (CGRP), a 37-amino acid residue neuropeptide, was immunostained in rat thymus at two sites: a subpopulation of thymic epithelial cells, namely subcapsular/perivascular cells, were heavily stained besides some nerve fibers surrounding arteries and arterioles. The administration of nanomolar concentrations of rat -CGRP dose-dependently raised intracellular cyclic adenosine monophosphate (cAMP) levels in isolated rat thymocytes (half-maximum stimulation 1 nM) but not in cultured rat thymic epithelial cells. Peptides structurally related to CGRP (i.e., rat calcitonin or amylin) had no effect. CGRP(8–37), an N-terminally truncated form, acted as an antagonist. Peripheral blood lymphocytes did not respond to CGRP, suggesting that receptors are present only on a subpopulation of thymocytes but not on mature T cells. This was substantiated by visualization of CGRP receptors on single cells by use of CGRP-gold and -biotin conjugates of established biological activity: only a small proportion of isolated thymocytes was surface labeled. In situ, the CGRP conjugates labeled receptors on large thymocytes residing in the outer cortical region of rat thymus pseudolobules. Thus, immunoreactive CGRP is found in subcapsular/perivascular thymic epithelial cells and acts via specific CGRP receptors on thymocytes by raising their intracellular cAMP level. It is suggested that CGRP is a paracrine thymic mediator that might influence the differentiation, maturation, and proliferation of thymocytes.  相似文献   
77.
78.
Abstract: We have cloned and expressed a rat brain cDNA, TS11, that encodes a μ-opioid receptor based on pharmacological, physiological, and anatomical criteria. Membranes were prepared from COS-7 cells transiently expressing TS11 bound [3H]diprenorphine with high affinity (KD = 0.23 ± 0.04 nM). The rank order potency of drugs competing with [3H]diprenorphine was as follows: levorphanol (Ki = 0.6 ± 0.2 nM) ≈β-endorphin (Ki = 0.7 ± 0.5 nM) ≈ morphine (Ki = 0.8 ± 0.5 nM) ≈ [d -Ala2, N-Me-Phe4,Gly-ol5]-enkephalin (DAMGO; Ki = 1.6 ± 0.5 nM) ? U50,488 (Ki = 910 ± 0.78 nM) > [d -Pen2,5]-enkephalin (Ki = 3,170 ± 98 nM) > dextrorphan (Ki = 4,100 ± 68 nM). The rank order potencies of these ligands, the stereospecificity of levorphanol, and morphine's subnanomolar Ki are consistent with a μ-opioid binding site. Two additional experiments provided evidence that this opioid-binding site is functionally coupled to G proteins: (a) In COS-7 cells 50 µM 5′-guanylylimidodiphosphate shifted a fraction of receptors with high affinity for DAMGO (IC50 = 3.4 ± 0.5 nM) to a lower-affinity state (IC50 = 89.0 ± 19.0 nM), and (b) exposure of Chinese hamster ovary cells stably expressing the cloned μ-opioid receptor to DAMGO resulted in a dose-dependent, naloxone-sensitive inhibition of forskolin-stimulated cyclic AMP production. The distribution of mRNA corresponding to the μ-opioid receptor encoded by TS11 was determined by in situ hybridization to brain sections prepared from adult female rats. The highest levels of μ-receptor mRNA were detected in the thalamus, medial habenula, and the caudate putamen; however, significant hybridization was also observed in many other brain regions, including the hypothalamus.  相似文献   
79.
Abstract: Excitatory amino acid (EAA) neurotransmitters may play a role in the pathophysiology of traumatic injury to the CNS. Although NMDA receptor antagonists have been reported to have therapeutic efficacy in animal models of brain injury, these compounds may have unacceptable toxicity for clinical use. One alternative approach is to inhibit the release of EAAs following traumatic injury. The present study examined the effects of administration of a novel sodium channel blocker and EAA release inhibitor, BW1003C87, or the NMDA receptor-associated ion channel blocker magnesium chloride on cerebral edema formation following experimental brain injury in the rat. Animals (n = 33) were subjected to fluid percussion brain injury of moderate severity (2.3 atm) over the left parietal cortex. Fifteen minutes after injury, the animals received a constant infusion of BW1003C87 (10 mg/kg, i.v.), magnesium chloride (300 µmol/kg, i.v.), or saline over 15 min (2.75 ml/kg/15 min). In all animals, regional tissue water content in brain was assessed at 48 h after injury, using the wet weight/dry weight technique. In saline-treated control animals, fluid percussion brain injury produced significant regional brain edema in injured left parietal cortex ( p < 0.001), the cortical area adjacent to the site of maximal injury ( p < 0.001), left hippocampus ( p < 0.001), and left thalamus ( p = 0.02) at 48 h after brain injury. Administration of BW1003C87 15 min postinjury significantly reduced focal brain edema in the cortical area adjacent to the site of maximal injury ( p < 0.02) and left hippocampus ( p < 0.01), whereas magnesium chloride attenuated edema in left hippocampus ( p = 0.02). These results suggest that excitatory neurotransmission may play an important role in the pathogenesis of posttraumatic brain edema and that pre- or post-synaptic blockade of glutamate receptor systems may attenuate part of the deleterious sequelae of traumatic brain injury.  相似文献   
80.
Polyamines in Human Brain: Regional Distribution and Influence of Aging   总被引:2,自引:0,他引:2  
Abstract: Depolarization of adult rat forebrain slices with veratrine induced the release of excitatory amino acids (glutamate and aspartate), the synthesis of nitric oxide (NO), and increases in cyclic GMP (cGMP). The NO synthase inhibitors N ω-monomethyl- l -arginine and N ω-nitro- l -arginine methyl ester decreased the release of NO and the levels of cGMP without affecting the release of excitatory amino acids. In contrast, the antiepileptic drug lamotrigine inhibited the release of excitatory amino acids and of NO, and decreased the levels of cGMP without causing a significant direct inhibition of the NO synthase. Furthermore, the synthesis of NO and the increases in cGMP induced by veratrine were partially blocked by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801 but not by 6-nitro-7-sulphamobenzo( f )quinoxaline-2,3-dione, a non-NMDA receptor antagonist. Neither of these compounds inhibited directly the NO synthase or the release of excitatory amino acids. Thus, these three types of compound act as an inhibitor of voltage-sensitive sodium channels (lamotrigine), as a receptor antagonist (MK-801), or as direct inhibitors of the NO synthase, to block the pathway leading to increased cGMP after veratrine depolarization. It is likely that some of the pharmacological and therapeutic actions shared by these three types of compound are, at least in part, a consequence of inhibition of the synthesis of NO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号