首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
  69篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有69条查询结果,搜索用时 0 毫秒
41.
Amphidinols (AMs) are a group of dinoflagellate metabolites with potent antifungal activity. As is the case with polyene macrolide antibiotics, the mode of action of AMs is accounted for by direct interaction with lipid bilayers, which leads to formation of pores or lesions in biomembranes. However, it was revealed that AMs induce hemolysis with significantly lower concentrations than those necessary to permeabilize artificial liposomes, suggesting that a certain factor(s) in erythrocyte membrane potentiates AM activity. Glycophorin A (GpA), a major erythrocyte protein, was chosen as a model protein to investigate interaction between peptides and AMs such as AM2, AM3 and AM6 by using SDS-PAGE, surface plasmon resonance, and fluorescent-dye leakages from GpA-reconstituted liposomes. The results unambiguously demonstrated that AMs have an affinity to the transmembrane domain of GpA, and their membrane-permeabilizing activity is significantly potentiated by GpA. Surface plasmon resonance experiments revealed that their interaction has a dissociation constant of the order of 10 μM, which is significantly larger than efficacious concentrations of hemolysis by AMs. These results imply that the potentiation action by GpA or membrane integral peptides may be due to a higher affinity of AMs to protein-containing membranes than that to pure lipid bilayers.  相似文献   
42.
The hearing loss caused by GJB2 mutations is usually congenital in onset, moderate to profound in degree, and non-progressive. The objective of this study was to study genotype/phenotype correlations and to document 14 children with biallelic GJB2 mutations who passed newborn hearing screening (NHS). Genetic testing for GJB2 mutations by direct sequencing was performed on 924 individuals (810 families) with hearing loss, and 204 patients (175 families) were found to carry biallelic GJB2 mutations. NHS results were obtained through medical records. A total of 18 pathological mutations were identified, which were subclassified as eight inactivating and 10 non-inactivating mutations. p.I128M and p.H73Y were identified as novel missense GJB2 mutations. Of the 14 children with biallelic GJB2 mutations who passed NHS, eight were compound heterozygotes and 3 were homozygous for the c.235delC mutation in GJB2, and the other three combinations of non-c.235delC mutations identified were p.Y136X-p.G45E/p.V37I heterozygous, c.512ins4/p.R143W heterozygous, and p.V37I/p.R143W heterozygous. These 14 cases demonstrate that the current NHS does not identify all infants with biallelic GJB2 mutations. They suggest that the frequency of non-penetrance at birth is approximately 6.9% or higher in DFNB1 patients and provide further evidence that GJB2 hearing loss may not always be congenital in onset.  相似文献   
43.
Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02–1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5′-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.  相似文献   
44.
  1. Download : Download high-res image (86KB)
  2. Download : Download full-size image
Highlights
  • •TMT labeling protocol with excellent intra- and interlaboratory reproducibility.
  • •Complete in-solution labeling of peptides using 1/8 of recommended TMT quantities.
  • •Demonstration of utility for deep-scale (phospho)proteome analysis.
  相似文献   
45.
Laccase is a promising biocatalyst with many possible applications, including bioremediation, chemical synthesis, biobleaching of paper pulp, biosensing, textile finishing and wine stabilization. The immobilization of enzymes offers several improvements for enzyme applications because the storage and operational stabilities are frequently enhanced. Moreover, the reusability of immobilized enzymes represents a great advantage compared with free enzymes. In this work, we discuss the different methodologies of enzyme immobilization that have been reported for laccases, such as adsorption, entrapment, encapsulation, covalent binding and self-immobilization. The applications of laccase immobilized by the aforementioned methodologies are presented, paying special attention to recent approaches regarding environmental applications and electrobiochemistry.  相似文献   
46.
Histidine-rich glycoprotein (HRG) is a plasma protein implicated in the innate immune system. In recent studies, we showed that either HRG, or the Arg23-Lys66 glycopeptide derived from HRG, in concert with concanavalin A (Con A), promotes a morphological change and adhesion of the human leukemic T-cell line MOLT-4 to culture dishes, and that cell surface glycosaminoglycan or Fcγ receptors do not participate in this cellular event. In the present study, we identified the α-subunit of ATP synthase as one of the HRG-binding proteins on the surface of T-cells by HRG-derived glycopeptide affinity chromatography and by a peptide mass finger printing method. HRG specifically interacted with mitochondrial ATP synthase with a dissociation constant of 66 nM. The presence of α- and β-subunits of ATP synthase on the plasma membrane of MOLT-4 cell was demonstrated by immunofluorescent staining and FACS analysis. The HRG/Con A-induced morphological changes of MOLT-4 cells were specifically inhibited by a monoclonal antibody against the β-subunit of ATP synthase. These results strongly suggest that the cell surface ATP synthase functions as a binding protein for HRG on MOLT-4 cells, which is required for the morphological changes observed in MOLT-4 cells following treatment with HRG/Con A.  相似文献   
47.
Calmodulin (CaM) is a ubiquitous second messenger protein that regulates a variety of structurally and functionally diverse targets in response to changes in Ca2+ concentration. CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are the prominent CaM targets that play an opposing role in many cellular functions including synaptic regulation. Since CaMKII and CaN compete for the available Ca2+/CaM, the differential affinity of these enzymes for CaM is crucial for achieving a balance in Ca2+ signaling. We used the computational protein design approach to modify CaM binding specificity for these two targets. Starting from the X-ray structure of CaM in complex with the CaM-binding domain of CaMKII, we optimized CaM interactions with CaMKII by introducing mutations into the CaM sequence. CaM optimization was performed with a protein design program, ORBIT, using a modified energy function that emphasized intermolecular interactions in the sequence selection procedure. Several CaM variants were experimentally constructed and tested for binding to the CaMKII and CaN peptides using the surface plasmon resonance technique. Most of our CaM mutants demonstrated small increase in affinity for the CaMKII peptide and substantial decrease in affinity for the CaN peptide compared to that of wild-type CaM. Our best CaM design exhibited an about 900-fold increase in binding specificity towards the CaMKII peptide, becoming the highest specificity switch achieved in any protein-protein interface through the computational protein design approach. Our results show that computational redesign of protein-protein interfaces becomes a reliable method for altering protein binding affinity and specificity.  相似文献   
48.
The twin-arginine translocation (Tat) system exports folded proteins across bacterial cytoplasmic membranes. Recently, genes encoding TatA, TatB and TatC homologues were identified in Streptomyces lividans and the functionality of the Tat pathway was demonstrated. Here, we have examined the localization and structural organization of the Tat components in S. lividans. Interestingly, besides being membrane-associated proteins, S. lividans TatA and TatB were also detected in the cytoplasm. TatC could only be detected in isolated membrane fractions. Whereas all TatC was found to be stably inserted in the membrane, part of membrane-associated TatA and TatB could be extracted following high salt, sodium carbonate or urea treatment suggesting a more loose association with the membrane. Finally, we have analyzed Tat complexes that could be purified from an S. lividans TatABC overproducing strain. From the cytoplasmic membrane, two types of high molecular mass Tat complexes could be isolated having a similar composition as those isolated from Escherichia coli. In the cytoplasm, TatA and TatB were detected as monomer or as homo-oligomeric complexes.  相似文献   
49.
Two new reducing glycoconjugates [N-D-galacturonoyl-putrescinamide (GalA-Put) and N,N'-di-D-galacturonoyl-putrescinamide (GalA-Put-GalA)] and homogalacturonan-putrescine (GalAn-Put) conjugates were synthesised as model compounds representing possible amide (isopeptide) linkage points between a polyamine and either one or two pectic galacturonate residues. The amide bond(s) were stable to cold acid and alkali (2M TFA and 0.1M NaOH at 25 degrees C) but rapidly hydrolysed by these agents at 100 degrees C. The amide bond(s) were resistant to Driselase and to all proteinases tested, although Driselase digested GalAn-Put, releasing fragments such as GalA3-Put-GalA3. To trace the possible formation of GalA-polyamine amide bonds in vivo, we fed Arabidopsis and rose cell-cultures and chickpea internodes with [14C]Put. About 20% of the 14C taken up was released as 14CO2, indicating some catabolism. An additional approximately 73% of the 14C taken up (in Arabidopsis), or approximately 21% (in rose), became ethanol-insoluble, superficially suggestive of polysaccharide-Put covalent bonding. However, much of the ethanol-inextractable 14C was subsequently extractable by acidified phenol or by cold 1M TFA. The small proportion of radioactive material that stayed insoluble in both phenol and TFA was hydrolysable by Driselase or hot 6M HCl, yielding 14C-oligopeptides and/or amino acids (including Asp, Glu, Gly, Ala and Val); no free 14C-polyamines were released by hot HCl. We conclude that if pectin-polyamine amide bonds are present, they are a very minor component of the cell walls of cultured rose and Arabidopsis cells and chickpea internodes.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号