首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14617篇
  免费   851篇
  国内免费   724篇
  16192篇
  2024年   27篇
  2023年   215篇
  2022年   346篇
  2021年   424篇
  2020年   437篇
  2019年   637篇
  2018年   544篇
  2017年   349篇
  2016年   356篇
  2015年   483篇
  2014年   939篇
  2013年   1130篇
  2012年   710篇
  2011年   983篇
  2010年   688篇
  2009年   695篇
  2008年   750篇
  2007年   750篇
  2006年   660篇
  2005年   611篇
  2004年   525篇
  2003年   474篇
  2002年   417篇
  2001年   259篇
  2000年   243篇
  1999年   205篇
  1998年   188篇
  1997年   143篇
  1996年   148篇
  1995年   126篇
  1994年   150篇
  1993年   108篇
  1992年   120篇
  1991年   116篇
  1990年   81篇
  1989年   78篇
  1988年   62篇
  1987年   72篇
  1986年   67篇
  1985年   119篇
  1984年   116篇
  1983年   79篇
  1982年   95篇
  1981年   97篇
  1980年   89篇
  1979年   62篇
  1978年   58篇
  1977年   42篇
  1976年   46篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Tertiary amine local anesthetics (dibucaine, Tetracaine, procaine, etc.) modify cell morphology, concanavalin A (Con A)-mediated agglutinability and redistribution of Con A receptors. Con A agglutination of untransformed mouse 3T3 cells was enhanced at low concentrations of local anesthetics, and the dynamics of fluorescent-Con A indicated that ligand-induced clustering was increased in the presence of the drugs. In contast, these drugs inhibited Con A-induced receptor capping on mouse spleen cells. These effects can be duplicated by combinations of vinblastine (or colchicine) and cytochalasin B suggesting that local anesthetics act on microtubule cell surface receptor mobility and distribution. It is proposed that tertiary amine local anesthetics displace plasma membrane-bond Ca2+, resulting in disengagement of microfilament systems from the plasma membrane and increased cellular Ca2+ concentration to levels which disrupt microtubular organization. The possible involvement of cellular Ca2+ in cytoskeletal destruction by local anesthetics was investigated utilizing Ca2+-specific ionophores A23187 and X537A. In media containing Ca2+ and cytochalasin B these ionophores caused effects similar to tertiary amine local anesthetics.  相似文献   
32.
To determine the role of subcellular organelles in hormone secretion, we studied the interaction of low calcium concentration (low Ca), retinol (vitamin A, vit A), vinblastine (VB), and cytochalasin B (CB) in parathyroid hormone (PTH) secretion. Bovine parathyroid tissue pieces were incubated in media containing the above agents. Vit A stimulated PTH release to a mean of 170% of control. This effect of vit A was diminished when tissues were simultaneously stimulated with low Ca and, furthermore, absent when tissues were pre-incubated in low Ca.VB had no effect on low Ca-stimulated secretion, but did inhibit vit A-induced secretion in the presence of low Ca.CB stimulated PTH secretion to a mean of 150% of control during the second and third hours of incubation. CB had at least an additive effect with low Ca in stimulating PTH secretion, with a more prompt and greater response than seen in normal calcium. VB did not inhibit the acute effect of CB on secretion in normal calcium media, but did inhibit CB-induced secretion during the third hour of incubation.None of the agents stimulated the release of lysosomal cathepsin D, and vit A and CB did not stimulate the release of LDH.Our results suggest that; (1) vit A and low Ca stimulate PTH secretion through a common pathway involving the cell membrane; (2) CB stimulates PTH secretion through a separate effect on the cell membrane or submembrane microfilaments, which normally retards secretion of PTH; and (3) microtubular proteins may facilitate basal secretion of PTH, but are not involved in low Ca-stimulated secretion of PTH.  相似文献   
33.
The ultrastructural features of a purified fraction of Na+,K+-adenosine triphosphatase (ATPase) isolated from dog kidney medulla were compared with those of the initial crude microsomal fraction in the purification sequence. Although both fractions consist of vesicular structures, the purified fraction is more homogeneous with respect to overall size and intramembrane protein particle size and distribution. Polyacrylamide gel electrophoresis profiles of both fractions reveal multiple proteins in the microsomal fraction but only two in the final purified fraction. The membranes of the pure fraction comprised one class of particles roughly 95–120 Å in diameter which represent the in vitro configuration of Na+,K+-ATPase.  相似文献   
34.
叶绿体基因组编码许多参与光合作用和其他代谢过程的关键蛋白质,在叶绿体中合成的代谢物对于植物正常的生长发育至关重要。根对紫外线-B辐射敏感[Root-UVB (ultraviolet radiation B)-sensitive, RUS]蛋白属于叶绿体蛋白,由高度保守的DUF647结构域组成,在参与植物形态发生、物质运输和能量代谢等多种生命活动的调控中发挥作用。本文就近年来关于RUS家族在植物的胚胎发育、光形态建成、维生素B6稳态、生长素转运和花药发育等生长发育过程中的相关研究进行回顾和总结,为深入研究其在植物生长发育中的分子调控机制提供了参考。  相似文献   
35.
Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB.  相似文献   
36.
Transglutaminase 2 (TGase2) is a calcium-dependent, cross-linking enzyme that catalyzes iso-peptide bond formation between peptide-bound lysine and glutamine residues. TGase 2 can activate NF-κB through the polymerization-mediated depletion of I-κBα without IKK activation. This NF-κB activation mechanism is associated with drug resistance in cancer cells. However, the polymers cannot be detected in cells, while TGase 2 over-expression depletes free I-κBα, which raises the question of how the polymerized I-κBα can be metabolized in cells. Among proteasome, lysosome and calpain systems, calpain inhibition was found to effectively increase the accumulation of I-κBα polymers in MCF7 cells transfected with TGase 2, and induced high levels of I-κBα polymers as well in MDA-MB-231 breast cancer cells that naturally express a high level of TGase 2. Inhibition of calpain also boosted the level of I-κBα polymers in HEK-293 cells in case of TGase 2 transfection either with I-κBα or I-κBα mutant (S32A, S36A). Interestingly, the combined inhibition of calpain and the proteasome resulted in an increased accumulation of both I-κBα polymers and I-κBα, concurrent with an inhibition of NF-κB activity in MDA-MB-231 cells. This suggests that μ-calpain proteasome-dependent I-κBα polymer degradation may contribute to cancer progression through constitutive NF-κB activation.  相似文献   
37.
Receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANKL play critical roles in bone re-modeling, immune function, vascular disease and mammary gland development. To study the interaction of RANK and RANKL, we have expressed both extracellular domain of RANK and ectodomain of RANKL using Escherichia coli expression system. RANK was expressed as an inclusion body first which properly refolded later, while RANKL was initially produced as a GST fusion protein, after which the GST was removed by enzyme digestion. Soluble RANK existed as a monomer while RANKL was seen as a trimer in solution, demonstrated by gel filtration chromatography and cross-linking experiment. The recombinant RANK and RANKL could bind to each other and the binding affinity of RANKL for RANK was measured with surface plasmon resonance technology and KD value is about 1.09 × 10−10 M.  相似文献   
38.
The most probable secondary structure of an RNA molecule, given the nucleotide sequence, can be computed efficiently if a stochastic context-free grammar (SCFG) is used as the prior distribution of the secondary structure. The structures of some RNA molecules contain so-called pseudoknots. Allowing all possible configurations of pseudoknots is not compatible with context-free grammar models and makes the search for an optimal secondary structure NP-complete. We suggest a probabilistic model for RNA secondary structures with pseudoknots and present a Markov-chain Monte-Carlo Method for sampling RNA structures according to their posterior distribution for a given sequence. We favor Bayesian sampling over optimization methods in this context, because it makes the uncertainty of RNA structure predictions assessable. We demonstrate the benefit of our method in examples with tmRNA and also with simulated data. McQFold, an implementation of our method, is freely available from http://www.cs.uni-frankfurt.de/~metzler/McQFold.  相似文献   
39.
Toll-like receptors (TLRs) play a key role in linking pathogen recognition with the induction of innate immunity. They have been implicated in the pathogenesis of chronic inflammatory diseases, representing potential targets for prevention/treatment. Vegetable-rich diets are associated with the reduced risk of several inflammatory disorders. In the present study, based on an extensive screening of vegetable extracts for TLR-inhibiting activity in HEK293 cells co-expressing TLR with the NF-κB reporter gene, we found cabbage and onion extracts to be the richest sources of a TLR signaling inhibitor. To identify the active substances, we performed activity-guiding separation of the principal inhibitors and identified 3-methylsulfinylpropyl isothiocyanate (iberin) from the cabbage and quercetin and quercetin 4′-O-β-glucoside from the onion, among which iberin showed the most potent inhibitory effect. It was revealed that iberin specifically acted on the dimerization step of TLRs in the TLR signaling pathway. To gain insight into the inhibitory mechanism of TLR dimerization, we developed a novel probe combining an isothiocyanate-reactive group and an alkyne functionality for click chemistry and detected the probe bound to the TLRs in living cells, suggesting that iberin disrupts dimerization of the TLRs via covalent binding. Furthermore, we designed a variety of iberin analogues and found that the inhibition potency was influenced by the oxidation state of the sulfur. Modeling studies of the iberin analogues showed that the oxidation state of sulfur might influence the global shape of the isothiocyanates. These findings establish the TLR dimerization step as a target of food-derived anti-inflammatory compounds.  相似文献   
40.
Emerging studies indicate that intracellular eukaryotic ceramide species directly activate cathepsin B (CatB), a lysosomal‐cysteine‐protease, in the cytoplasm of osteoclast precursors (OCPs) leading to elevated RANKL‐mediated osteoclastogenesis and inflammatory osteolysis. However, the possible impact of CatB on osteoclastogenesis elevated by non‐eukaryotic ceramides is largely unknown. It was reported that a novel class of phosphoglycerol dihydroceramide (PGDHC), produced by the key periodontal pathogen Porphyromonas gingivalis upregulated RANKL‐mediated osteoclastogenesis in vitro and in vivo. Therefore, the aim of this study was to evaluate a crosstalk between host CatB and non‐eukaryotic PGDHC on the promotion of osteoclastogenesis. According to a pulldown assay, high affinity between PGDHC and CatB was observed in RANKL‐stimulated RAW264.7 cells in vitro. It was also demonstrated that PGDHC promotes enzymatic activity of recombinant CatB protein ex vivo and in RANKL‐stimulated osteoclast precursors in vitro. Furthermore, no or little effect of PGDHC on the RANKL‐primed osteoclastogenesis was observed in male and female CatB‐knock out mice compared with their wild type counterparts. Altogether, these findings demonstrate that bacterial dihydroceramides produced by Pgingivalis elevate RANKL‐primed osteoclastogenesis via direct activation of intracellular CatB in OCPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号