首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32297篇
  免费   1457篇
  国内免费   1510篇
  35264篇
  2024年   38篇
  2023年   344篇
  2022年   451篇
  2021年   638篇
  2020年   663篇
  2019年   834篇
  2018年   732篇
  2017年   708篇
  2016年   804篇
  2015年   1069篇
  2014年   1783篇
  2013年   2669篇
  2012年   1401篇
  2011年   1415篇
  2010年   1223篇
  2009年   1402篇
  2008年   1464篇
  2007年   1478篇
  2006年   1389篇
  2005年   1301篇
  2004年   1177篇
  2003年   1139篇
  2002年   1033篇
  2001年   772篇
  2000年   760篇
  1999年   719篇
  1998年   705篇
  1997年   632篇
  1996年   575篇
  1995年   610篇
  1994年   592篇
  1993年   471篇
  1992年   482篇
  1991年   379篇
  1990年   385篇
  1989年   294篇
  1988年   344篇
  1987年   269篇
  1986年   231篇
  1985年   335篇
  1984年   391篇
  1983年   256篇
  1982年   287篇
  1981年   140篇
  1980年   121篇
  1979年   118篇
  1978年   71篇
  1977年   38篇
  1976年   41篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Flavones are biologically active compounds obtained mainly from plant sources. Pharmaceutically important compounds can be delivered to the physiological target by loading them in carriers like cyclodextrins and magnetic nanoparticles. Herein, the binding of 6-methoxyflavone to β-cyclodextrin and DNA is studied using UV–visible absorption and fluorescence spectroscopy. The loading of 6-methoxyflavone onto a magnetic nanoparticles is employed. β-cyclodextrin encapsulates the 6-methoxyflavone to form an inclusion complex. β-cyclodextrin also used to draw forth 6-methoxyflavone loaded onto a magnetic nanoparticles. The morphology, magnetic property and the crystallite size of the nanoparticles are studied using scanning electron microscopy, vibrating sample magnetometry and X-ray diffraction techniques, respectively. The binding of the drug-loaded magnetic nanoparticles to DNA shows that the compound is accessible to DNA and available mostly on the surface of the nanoparticles despite a modified dextan polymer supposedly encapsulates the flavone.  相似文献   
182.
杨洋  刘冬生 《生命科学》2008,20(3):358-363
i-motif结构是一种特殊的DNA二级结构,它是由四个胞嘧啶重复序列在质子的参与下形成的四链螺旋,该结构只有在酸性环境才能维持,因此可以将其设计成一个质子驱动的纳米级分子机器。本文通过与其它DNA分子机器比较,详述了质子驱动的分子机器的工作机理,评价了该机器的优越性、做功能力,并介绍了其多方面应用。  相似文献   
183.
DNA recombinases (RecA in bacteria, Rad51 in eukarya and RadA in archaea) catalyse strand exchange between homologous DNA molecules, the central reaction of homologous recombination, and are among the most conserved DNA repair proteins known. RecA is the sole protein responsible for this reaction in bacteria, whereas there are several Rad51 paralogs that cooperate to catalyse strand exchange in eukaryotes. All archaea have at least one (and as many as four) RadA paralog, but their function remains unclear. Herein, we show that the three RadA paralogs encoded by the Sulfolobus solfataricus genome are expressed under normal growth conditions and are not UV inducible. We demonstrate that one of these proteins, Sso2452, which is representative of the large archaeal RadC subfamily of archaeal RadA paralogs, functions as an ATPase that binds tightly to single-stranded DNA. However, Sso2452 is not an active recombinase in vitro and inhibits D-loop formation by RadA. We present the high-resolution crystal structure of Sso2452, which reveals key structural differences from the canonical RecA family recombinases that may explain its functional properties. The possible roles of the archaeal RadA paralogs in vivo are discussed.  相似文献   
184.
185.
186.
187.
Oligodeoxyribonucleotides with terminal runs of contiguous guanines, d(AnGm), spontaneously associate into high molecular weight complexes that resolve on polyacrylamide gels as a regular ladder pattern of bands with low mobility. The aggregates, which we call frayed wires, arise from the interaction between the guanine residues of the oligonucleotides; the adenine tracts are single stranded and can take part in Watson–Crick interactions. Oligonucleotides, with different arm‐to‐stem ratios and total length, readily associate in the presence of Mg2+ to form aggregates consisting of an integer number of strands. The type of the observed aggregates is determined by the length of the guanine run. Oligonucleotides with six guanines form four‐ and eight‐stranded complexes; there is no further polymerization. An increase in the number of guanine residues to 10 and 15 leads to polymerization resulting in a ladder pattern of up to 9 bands and an intense signal at the top of the gel. The relative population of any given species in a frayed wire sample is governed by the guanine stem length and is not affected to any substantial extent by arms up to 40 bases long. The type and concentration of the cation in the solution affect the degree of aggregation, with Na+ and K+ promoting the formation of complexes comprised of 2–4 strands and Mg2+ being the most effective in facilitating polymerization. The electrophoretic behavior of frayed wires was analyzed in the framework of the Ogston theory. The free mobility of frayed wires in the solution is close to the values reported for single‐stranded DNA, indicating the equivalence of the charge density of the two conformations. The retardation coefficients for frayed wires arising from a single kind of parent strand increase with the introduction of each additional strand. There is no correlation between the retardation coefficient and the type of parent strand; rather, the magnitude of the retardation coefficient is determined by the total molecular weight of the complex. The values of the retardation coefficients are consistently higher than those for double‐stranded DNA and they display much stronger dependence on the total molecular weight. Presumably, the distinct structural and dynamic characteristics of the two conformations account for their different electrophoretic behavior. © 1999 John Wiley & Sons, Inc. Biopoly 49: 287–295, 1999  相似文献   
188.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
189.
We investigate multilayered helical packaging of double-stranded DNA, or of a general polymer chain with persistence length lb, into an ideal, inert cylindrical container, reaching densities slightly below close packaging. We calculate the free energy as a function of the packaged length, based on the energies for bending, twisting, the suffered entropy loss, and the electrostatic energy in a Debye–Hückel model. In the absence of charges on the packaged polymer, a critical packaging force can be determined, similar to the mechanism involved in DNA unzipping models. When charges are taken into consideration, in the final packaging state the charges which are chemically distant become geometrically close, and therefore a steep rise is seen in the free energy. We argue that due to the extremely ordered and almost closely packaged final state the actual packaging geometry does not influence the behaviour of the free energy, pointing towards a certain universality of this state of the polymer. Our findings are compared to a recent simulations study, showing that the model is sensitive to the screening length.  相似文献   
190.
The genus Abies is distributed discontinuously in the temperate and subtropical montane forests of the northern hemisphere. In Mesoamerica (Mexico and northern Central America), modern firs originated from the divergence of isolated mountain populations of migrating North American taxa. However, the number of ancestral species, migratory waves and diversification speed of these taxa is unknown. Here, variation in repetitive (Pt30204, Pt63718, and Pt71936) and non-repetitive (rbcL, rps18-rpl20 and trnL-trnF) regions of the chloroplast genome was used to reconstruct the phylogenetic relationships of the Mesoamerican Abies in a genus-wide context. These phylogenies and two fossil-calibrated scenarios were further employed to estimate divergence dates and diversification rates within the genus, and to test the hypothesis that, as in many angiosperms, conifers may exhibit accelerated speciation rates in the subtropics. All phylogenies showed five main clusters that mostly agreed with the currently recognized sections of Abies and with the geographic distribution of species. The Mesoamerican taxa formed a single group with species from southwestern North America of sections Oiamel and Grandis. However, populations of the same species were not monophyletic within this group. Divergence of this whole group dated back to the late Paleocene and the early Miocene depending on the calibration used, which translated in very low diversification rates (r0.0 = 0.026-0.054, r0.9 = 0.009-0.019 sp/Ma). Such low rates were a constant along the entire genus, including both the subtropical and temperate taxa. An extended phylogeographic analysis on the Mesoamerican clade indicated that Abies flinckii and A. concolor were the most divergent taxa, while the remaining species (A. durangensis, A. guatemalensis, A. hickelii, A. religiosa and A. vejari) formed a single group. Altogether, these results show that divergence of Mesoamerican firs coincides with a model of environmental stasis and decreased extinction rate, being probably prompted by a series of range expansions and isolation-by-distance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号