全文获取类型
收费全文 | 4747篇 |
免费 | 12篇 |
国内免费 | 8篇 |
专业分类
4767篇 |
出版年
2024年 | 54篇 |
2023年 | 350篇 |
2022年 | 225篇 |
2021年 | 269篇 |
2020年 | 353篇 |
2019年 | 441篇 |
2018年 | 414篇 |
2017年 | 292篇 |
2016年 | 353篇 |
2015年 | 193篇 |
2014年 | 442篇 |
2013年 | 902篇 |
2012年 | 40篇 |
2011年 | 40篇 |
2010年 | 32篇 |
2009年 | 16篇 |
2008年 | 20篇 |
2007年 | 13篇 |
2006年 | 4篇 |
2005年 | 47篇 |
2004年 | 31篇 |
2003年 | 25篇 |
2002年 | 24篇 |
2001年 | 10篇 |
2000年 | 9篇 |
1999年 | 7篇 |
1998年 | 12篇 |
1997年 | 8篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1989年 | 1篇 |
1986年 | 1篇 |
1985年 | 14篇 |
1984年 | 21篇 |
1983年 | 24篇 |
1982年 | 11篇 |
1981年 | 9篇 |
1980年 | 11篇 |
1979年 | 10篇 |
1978年 | 7篇 |
1977年 | 9篇 |
1976年 | 3篇 |
1975年 | 4篇 |
1974年 | 6篇 |
1973年 | 2篇 |
排序方式: 共有4767条查询结果,搜索用时 15 毫秒
91.
Dhruti Amin 《Archives Of Phytopathology And Plant Protection》2013,46(9-10):485-504
AbstractThe present study was designed to investigate the effect of fungicide Opera 183?g/L SE on groundnut crop (either as seed or foliar treatment) to control damages and losses incurred especially by the soil borne pathogens Sclerotium rolfsii and Aspergillus niger. The results revealed that 0.15% Opera-treated seeds showed early germination, high percentage of germination, less mortality rate in S. rolfsii and A. niger-infested soil. Enhanced activities of defence-related enzymes, protein, carbohydrate and chlorophyll content up to 2–4 d were observed in Opera-treated plants as compared with untreated plants. Moreover, the application of Opera had a positive effect on yield up to 22%, green fodder at the time of harvest and no disease incidence. From the present study, it is recommended that application of Opera at 750?ml/hectare in the form of foliar treatment to groundnut plants could help in inducing resistance towards opportunistic pathogens and also could enhance the yield. 相似文献
92.
Anton V. Endutkin Anna V. Yudkina Viktoriya S. Sidorenko 《Journal of biomolecular structure & dynamics》2013,31(17):4407-4418
AbstractTransient protein–protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data.Communicated by Ramaswamy H. Sarma 相似文献
93.
94.
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia–reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using 31P and hyperpolarized 13C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized 13C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung’s energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung’s mitochondrial activity through an independent interaction with the electron transport chain complexes. 相似文献
95.
In the study of food webs, the existence and explanation of recurring patterns, such as the scale invariance of linkage density, predator–prey ratios and mean chain length, constitute long-standing issues. Our study focused on litter-associated food webs and explored the influence of detritivore and predator niche width (as δ13C range) on web topological structure. To compare patterns within and between aquatic and terrestrial ecosystems and take account of intra-habitat variability, we constructed 42 macroinvertebrate patch-scale webs in four different habitats (lake, lagoon, beech forest and cornfield), using an experimental approach with litterbags. The results suggest that although web differences exist between ecosystems, patterns are more similar within than between aquatic and terrestrial web types. In accordance with optimal foraging theory, we found that the niche width of predators and prey increased with the number of predators and prey taxa as a proportion of total taxa in the community. The tendency was more marked in terrestrial ecosystems and can be explained by a lower per capita food level than in aquatic ecosystems, particularly evident for predators. In accordance with these results, the number of links increased with the number of species but with a significantly sharper regression slope for terrestrial ecosystems. As a consequence, linkage density, which was found to be directly correlated to niche width, increased with the total number of species in terrestrial webs, whereas it did not change significantly in aquatic ones, where connectance scaled negatively with the total number of species. In both types of ecosystem, web robustness to rare species removal increased with connectance and the niche width of predators. In conclusion, although limited to litter-associated macroinvertebrate assemblages, this study highlights structural differences and similarities between aquatic and terrestrial detrital webs, providing field evidence of the central role of niche width in determining the structure of detritus-based food webs and posing foraging optimisation constraints as a general mechanistic explanation of food web complexity differences within and between ecosystem types. 相似文献
96.
Tatiana A. Trifonova Ekaterina Y. Alkhutova 《International journal of phytoremediation》2016,18(12):1209-1220
This study considered the possibility of using plant community phytomass for the assessment of soil pollution with heavy metals (HM) from industrial wastes. The three-year-long field experiment was run under the regional natural meadow vegetation; the polymetallic galvanic slime was used as an industrial waste contaminant. It is shown that soil contamination primarily causes decrease of phytomass in the growing phytocenosis. The vegetation experiments determined nonlinear dependence of cultivated and wild plant biomass on the level of soil contamination; it is described by the equations of logistic and Gaussian regression. In the absence of permanent contaminants, the soil is self-cleaned over time. It reproduces phytomass mainly due to the productivity increase of the most pollution-tolerant species in the remaining phytocenosis. This phenomenon is defined as environmental hysteresis. Soil pollution by industrial waste leads to the loss of plant biodiversity. The research shows that the study of the HM impact on ecosystems is expedient given the consideration of the “soil–phytocenosis–pollutant” complex in the “dose–response” aspect. The reaction of phytocenosis on HM showing decline in phytomass leads to serious limitations in the choice of accumulating plants, because the adsorbed HM are rejected through phytomass. 相似文献
97.
《Bioorganic & medicinal chemistry》2016,24(10):2242-2250
Suppression of glucose reabsorption through the inhibition of sodium-dependent glucose co-transporter 2 (SGLT2) is a promising therapeutic approach for the treatment of type 2 diabetes. To investigate the effect of C6-substitution on inhibition of SGLT2 by N-indolylglucosides, a small library of 6-triazole, 6-amide, 6-urea, and 6-thiourea N-indolylglycosides were synthesized and tested. A detailed structure–activity relationship (SAR) study culminated in the identification of 6-amide derivatives 6a and 6o as potent SGLT2 inhibitors, which were further tested for inhibitory activity against SGLT1. The data obtained indicated that 6a and 6o are mildly to moderately selective for SGLT2 over SGLT1. Both compounds were also evaluated in a urinary glucose excretion test and pharmacokinetic study; 6a was found capable of inducing urinary glucose excretion in normal SD rats. 相似文献
98.
99.
Background
Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.Aim
The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors. 相似文献100.
The results of our present study indicate that 1 alpha, 25-dihydroxyvitamin D3[1 alpha, 25(OH)2D3] directly induces fusion of mouse alveolar macrophages without any participation of T-lymphocytes by a mechanism involving RNA and protein synthesis but not DNA synthesis. We have reported that 1 alpha, 25(OH)2D3 induces fusion of alveolar macrophages by a direct mechanism and by a spleen cell-mediated indirect mechanism [(1983) Proc. Natl. Acad. Sci. USA 80, 5583-5587]. Alveolar macrophages pretreated with or without anti-Thy 1.2 antibody and complement fused similarly when they were incubated with 1 alpha, 25(OH)2D3. The vitamin suppressed DNA synthesis, but it significantly enhanced RNA and protein synthesis. The 1 alpha, 25(OH)2D3-induced fusion was blocked by adding actinomycin D or cycloheximide, but not by hydroxyurea. 相似文献