首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23001篇
  免费   404篇
  国内免费   707篇
  2023年   1167篇
  2022年   813篇
  2021年   573篇
  2020年   365篇
  2019年   747篇
  2018年   735篇
  2017年   656篇
  2016年   231篇
  2015年   281篇
  2014年   453篇
  2013年   518篇
  2012年   220篇
  2011年   1541篇
  2010年   461篇
  2009年   542篇
  2008年   542篇
  2007年   611篇
  2006年   540篇
  2005年   540篇
  2004年   687篇
  2003年   506篇
  2002年   706篇
  2001年   1083篇
  2000年   1024篇
  1999年   1071篇
  1998年   1106篇
  1997年   998篇
  1996年   498篇
  1995年   265篇
  1994年   159篇
  1993年   147篇
  1992年   118篇
  1991年   136篇
  1990年   107篇
  1989年   119篇
  1988年   111篇
  1987年   102篇
  1985年   211篇
  1984年   487篇
  1983年   459篇
  1982年   383篇
  1981年   353篇
  1980年   370篇
  1979年   338篇
  1978年   210篇
  1977年   182篇
  1976年   169篇
  1975年   155篇
  1974年   130篇
  1973年   94篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   
942.
943.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6–7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   
944.
945.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   
946.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisub-stituted-pyridinium-ethylcarboxy moieties (obtained from 2, 4, 6–trisubstituted-pyrylium salts and β-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by CJ vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides. only the membrane-bound enzyme (CA IV) was inhibited. whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, bcn-zolamíde. etc.) were used. unselective inhibition of all CA isozymes (I. II and IV) occurred.  相似文献   
947.
Nitrogen and phosphorus concentration in the effluent of a wastewater treatment plant can vary significantly, which could affect the growth kinetic and chemical composition of microalgae when cultivated in this medium. The aim of this work was to study the rate of growth, nutrient removal and carbon dioxide biofixation as well as biomass composition of Scenedesmus obliquus (S. obliquus) when it is cultivated in wastewater at different nitrogen and phosphorus ratio, from 1:1 to 35:1. A more homogeneous method for calculating productivities in batch reactors was proposed. The proper N:P ratio for achieving optimum batch biomass productivity ranged between 9 and 13 (263 and 322 mg L?1 d?1 respectively). This was also the ratio range for achieving a total N and P removal. Above and below this range (9–13) the maximum biomass concentration changed, instead of the specific growth rate.The maximum carbon dioxide biofixation rate was achieved at N:P ratio between 13 and 22 (553 and 557 mg CO2 L?1 d?1 respectively). Lipid and crude protein content, both depend on the aging culture, reaching the maximum lipid content (34%) at the lowest N:P (1:1) and the maximum crude protein content (34.2%) at the highest N:P (35:1).  相似文献   
948.
Four D‐altritol nucleosides with a 3′‐O‐tert‐butyldimethylsilyl protecting group are synthesized (base moieties are adenine, guanine, thymine and 5‐methylcytosine). The nucleosides are obtained by ring opening reaction of 1,5:2,3‐dianhydro‐4,6‐O‐benzylidene‐D‐allitol. Optimal reaction circumstances (NaH, LiH, DBU, phase transfer, microwave irridation) for the introduction of the heterocycles are base‐specific. For the introduction of the 3′‐O‐silyl protecting group, long reaction times and several equivalents of tert‐butyldimethylsilyl chloride are needed.  相似文献   
949.
Inhibitors of xanthine oxidoreductase block conversion of xanthine to uric acid and are therefore potentially useful for treatment of hyperuricemia or gout. We determined the crystal structure of reduced bovine milk xanthine oxidoreductase complexed with oxipurinol at 2.0 Å resolution. Clear electron density was observed between the N2 nitrogen of oxipurinol and the molybdenum atom of the molybdopterin cofactor, indicating that oxipurinol coordinated directly to molybdenum. Oxipurinol forms hydrogen bonds with glutamate802, arginine880, and glutamate1261, which have previously been shown to be essential for the enzyme reaction. We discuss possible differences in the hypouricemic effect of inhibitors, including allopurinol and newly developed inhibitors, based on their mode of binding in the crystal structures.  相似文献   
950.
The CYP1A1 gene encoding for an enzyme involved in the metabolic activation of important tobacco carcinogens could be implicated in smoking-induced lung cancer. Given the strong association between tobacco smoking and lung cancer, the effect of tobacco smoke exposure has to be taken into account when studying the potential association between lung cancer and CYP1A1 genotypes. The effect of two CYP1A1 genetic polymorphisms (Mspl and IIe-Val) on lung cancer risk were evaluated using peripheral blood DNA from 150 lung cancer patients and 171 controls. The Mspl sitepresent allele was found among 19.3% of both cases and controls and the variant allele Val among 6.7% of cases and 8.8% of controls. Lung cancer risks associated with the Mspl site-present allele (OR= 0.9; 95%Cl: 0.5-1.8) or with the Val allele (OR= 0.8; 95%Cl: 0.3-1.9) were not increased after adjustment for tobacco and asbestos exposures. These results persisted when analyses were stratified on smoking status, daily consumption of tobacco or duration of smoking. Similar findings were obtained when squamous cell or small cell carcinomas were studied separately. This study thus suggests a minor role for the known CYP1A1 gene polymorphisms in predisposition to lung cancer among Caucasian populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号