首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5216篇
  免费   335篇
  国内免费   482篇
  6033篇
  2024年   14篇
  2023年   50篇
  2022年   53篇
  2021年   79篇
  2020年   142篇
  2019年   125篇
  2018年   101篇
  2017年   123篇
  2016年   127篇
  2015年   152篇
  2014年   164篇
  2013年   204篇
  2012年   140篇
  2011年   163篇
  2010年   123篇
  2009年   185篇
  2008年   223篇
  2007年   219篇
  2006年   178篇
  2005年   190篇
  2004年   198篇
  2003年   225篇
  2002年   220篇
  2001年   183篇
  2000年   165篇
  1999年   151篇
  1998年   171篇
  1997年   159篇
  1996年   175篇
  1995年   143篇
  1994年   143篇
  1993年   132篇
  1992年   140篇
  1991年   111篇
  1990年   133篇
  1989年   108篇
  1988年   91篇
  1987年   98篇
  1986年   82篇
  1985年   85篇
  1984年   70篇
  1983年   64篇
  1982年   69篇
  1981年   53篇
  1980年   40篇
  1979年   26篇
  1978年   14篇
  1977年   9篇
  1976年   9篇
  1975年   8篇
排序方式: 共有6033条查询结果,搜索用时 15 毫秒
11.
The green marine macroalga Ulva lactuca L. was found to be able to utilize HCO3? from sea water in two ways. When grown in flowing natural sea water at 16°C under constant dim irradiance, photosynthesis at pH8.4 was suppressed by acetazolamide but unaffected by 4,4′-diisothiocyanostilbene-2,2′-disulphonate. These responses indicate that photosynthetic HCO3? utilization was via extracellular carbonic anhydrase (CA) -mediated dehydration followed by CO2 uptake. The algae were therefore described as being in a ‘CA state’. If treated for more than 10 h in a sea water flow-through system at pH9.8, these thalli became insensitive to acetazolamide but sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulphonate. This suggests the involvement of an anion exchanger (AE) in the direct uptake of HCO3?, and these plants were accordingly described as being in an ‘AE state’. Such thalli showed an approximately 10-fold higher apparent affinity for HCO3? (at pH9.4) than those in the ‘CA state’, while thalli of both states showed a very high apparent affinity for CO2. These results suggest that the two modes of HCO3? utilization constitute two ways in which inorganic carbon may enter the Ulva lactuca cells, with the direct entry of HCO3?, characterizing the ‘AE state’, being inducible and possibly functioning as a complementary uptake system at high external pH values (e.g. under conditions conducive to high photosynthetic rates). Both mechanisms of entry appear to be connected to concentrating CO2 inside the cell, probably via a separate mechanism operating intracellularly.  相似文献   
12.
Photosynthetically active vesicles prepared from Chlamydomonas reinhardtii retained a light-dependent glutamate synthase activity which was highly specific for 2-oxoglutarate (Km=2.1 mM) and L-glutamine (Km=0.9 mM) as amido group acceptor and donor respectively. This activity was inhibited by azaserine, p-hydroxymercuribenzoate and 3-(p-chlorophenyl)-1,1-dimethyl urea.Light-dependent synthesis of glutamate was also obtained by coupling Chlamydomonas photosynthetic particles to purified ferredoxin-glutamate synthase, using ascorbate and 2,6-dichlorophenol-indophenol as electron donor. This system was also specific for 2-oxoglutarate (Km=1 mM) and L-glutamine (Km=0.8 mM) as substrates, and was stimulated by dithioerythritol. Azaserine and p-hydroxymercuribenzoate, but not 3-(p-chlorophenyl)-1,1-dimethyl urea, inhibited the reconstituted activity; high concentrations of 2-oxoglutarate were inhibitory.Abbreviations A Absorbance - CCP p-Trichlorometoxi-carbonylcyanide-phenylhydrazone - Chl Chlorophyll - CMU 3-(p-Chlorophenyl)-1,1-dimethyl urea - DPIP 2,6-Dichlorophenol-indophenol - DTE Dithioerythritol - MSX L-Methionine, D-L, sulfoximine - MV Methyl viologen  相似文献   
13.
14.
Using isolated pea thylakoids, the relative rate of QA - oxidation has been estimated under various conditions, from the restoration of the induction curves following a dark period and from light 1-induced changes in modulated chlorophyll fluorescence excited by light 2.Alterations of QinfA sup– oxidation rates were observed under conditions which affected the degree of thylakoid stacking, the lipid fluidity and the integrity of the membranes. The results are discussed in terms of the interactions between QA - and the plastoquinone pool with particular emphasis on lateral diffusion.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA Ethylenediaminetetracetate - Hepes N-2-hydroxyethyl piperazine-N-2-ethanesulphonic acid - NADP nicotinamide adenine dinucleotide phosphate  相似文献   
15.
Growth of Aphanocapsa in low iron media resulted in a decrease of the endogenous iron pool. Below a critical concentration photosynthetic electron transfer was specifically depressed. This was caused by a strong inhibition of the synthesis of cytochromes b-559 of PSII, cytochromes b-563, f-557, and the Rieske Fe-S center of the cytochrome complex and especially the Fe-S centers of PSI. The influence of iron limitation on respiration and chlorphyll formation was negligible.Paper presented at the FESPP meeting (Strasbourg, 1984)  相似文献   
16.
The fluorescence of the chlorophyll associated with photosystem II was studied in seedling and flag leaves of Triticum species. Seedling leaves of the diploid species T. urartu had higher values of t (the normalised area over the fluorescence induction curve of DCMU treated leaves) than those of the other species studied which included hexaploid T. aestivum. However this difference was not evident when leaves were grown in a low light intensity (40 µmol quanta of photosynthetically active radiation m–2 s–1). The smaller total number of chlorophyll molecules per photosystem II reaction centre (chl/RCII) in T. urartu (177) as compared with the other species (mean 234) was deduced from the observed differences in t. As a consequence of its lower chl/RCII, despite slightly lower chlorophyll content (mg m–2), T. urartu had a greater density of reaction centres than the other species (2880 cf 2230 nmol m–2 of leaf). Consistent with the lower chl/RCII of T. urartu, it had a higher chlorophyll a/b ratio than the other genotypes. Seedling leaves of T. urartu had higher light saturated rates of photosynthesis than those of the other species, when grown at high light, a difference associated with reaction centre density.In flag leaves, when the complications due to variable development and senescence patterns were eliminated, t of the diploid species including T. urartu was lower than that of T. aestivum. The lower apparent chl/RCII of T. urartu arose partly because the molar extinction coefficient of the chlorophyll in the leaves of T. urartu was greater than in T. aestivum. However, the density of PS II reaction centres was slightly lower for the diploid species studied because their chlorophyll contents were lower than the hexaploids.The validity of the method for estimating chl/RCII from fluorescence transients is discussed. The possibility is considered that the difference in apparent chl/RCII of flag and seedling leaves of R. urartu as compared to the other five genotypes is a consequence of its different adaptive response to the spectral quality of the light.  相似文献   
17.
The effect of phosphate feeding on the influence of low (2%) oxygen on photosynthetic carbon assimilation has been investigated in leaf discs of spinach (Spinacia oleracea L.) at 12°C. The following observations were made. First, after the transition from 20% O2 to 2% O2, the rate of CO2 uptake was inhibited at CO2 concentrations between about 250 and about 800 l CO2·l-1. Second, phosphate feeding stimulated the rate of CO2 uptake in 20% O2 at higher concentrations of CO2 (500–900 l·l-1). Third, phosphate feeding stimulated the rate of CO2 uptake in 2% O2 at all but the highest (900 l·l-1) and lowest 74 (l·l-1) concentrations of CO2 employed. Phosphate thereby restored the stimulation of photosynthesis by 2% O2 and it did so over a wide range of lower temperatures. Fourth, oscillatory behaviour, however generated, was dampened by phosphate feeding, even at very low concentrations of CO2. Contents of leaf metabolites were measured during the transition to 2% O2 in control and phosphate-fed leaf discs. During this period the ratio glycerate-3-phosphate/triose phosphate rose steeply, but fell again only in the phosphate-treated leaf discs. These data, taken together with measured ATP/ADP ratios, showed that assimilatory power, the ratio [ATP]·[NAD(P)H]/[ADP]·[Pi]·[NAD(P)], decreased when leaves were exposed to 2% O2, but that this decrease was minimised by previous feeding of phosphate. The mechanism of phosphate limitation is discussed in the light of the results.Abbreviations Ci intercellular concentration of CO2 - RuBP ribulose-1,5-bisphosphate  相似文献   
18.
The photosynthetic energy storage yield of uncoupled thylakoid membranes was monitored by photoacoustic spectroscopy at various measuring beam intensities. The energy storage rate as evaluated by the half-saturation measuring beam intensity (i50) was inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea, by heat inactivation or by artificial electron acceptors specific for photosystem I or photosystem II; and was activated by electron donors to photosystem I. The reactions involving both photosystems were all characterized by a similar maximal energy storage yield of 16±2 percent. The data could be interpreted if we assumed that the energy storage elicited by the photosystems at 35 Hz is detected at the level of the plastoquinone pool.Abbreviations PS photosystem - Tes N-Tris [hydroxymethl] methyl-2-aminoethanesulfonic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - FeCN potassium ferricyanide - DCBQ 2,5-dichlorobenzoquinone - TMPD N,N,N-tetramethyl-p-phenilenediamine  相似文献   
19.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   
20.
The Jornada del Muerto basin of the Chihuahuan Desert of southern New Mexico, USA, has undergone a marked transition of plant communities. Shrubs such as mesquite (Prosopis glandulosa) have greatly increased or now dominate in areas that were previously dominated by perennial grasses. The replacement of grasses by shrubs requires an establishment phase where small shrubs must compete directly with similar-sized grass plants. This is followed by a phase in which large, established shrubs sequester nutrients and water within their biomass and alter soil resources directly under their canopy, creating “islands” of fertility. We hypothesized that these two phases were associated with shrubs having different physiological response capacities related to their age or size and the resource structure of the environment. As a corollary, we hypothesized that responses of small shrubs would be more tightly coupled to variation in soil moisture availability compared to large shrubs. To test these hypotheses, we studied gas exchange and water relations of small (establishing) and large (established) shrubs growing in the Jornada del Muerto as a function of varying soil moisture during the season. The small shrubs had greater net assimilation, stomatal conductance, transpiration, and xylem water potential than large shrubs following high summer rainfall in July, and highest seasonal soil moisture at 0.3 m. High rates of carbon assimilation and water use would be an advantage for small shrubs competing with grasses when shallow soil moisture was plentiful. Large shrubs had greater net assimilation and water-use efficiency, and lower xylem water potential than small shrubs following a dry period in September, when soil moisture at 0.3 m was lowest. Low xylem water potentials and high water-use efficiency would allow large shrubs to continue acquiring and conserving water as soil moisture is depleted. Although the study provides evidence of differences in physiological responses of different-sized shrubs, there was not support for the hypothesis that small shrubs are more closely coupled to variation in soil moisture availability than large shrubs. Small shrubs may actually be less coupled to soil moisture than large shrubs, and thus avoid conditions when continued transpiration could not be matched by equivalent water uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号