首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4694篇
  免费   113篇
  国内免费   172篇
  2023年   25篇
  2022年   47篇
  2021年   39篇
  2020年   49篇
  2019年   78篇
  2018年   86篇
  2017年   60篇
  2016年   74篇
  2015年   82篇
  2014年   191篇
  2013年   352篇
  2012年   121篇
  2011年   208篇
  2010年   137篇
  2009年   231篇
  2008年   232篇
  2007年   281篇
  2006年   208篇
  2005年   199篇
  2004年   194篇
  2003年   174篇
  2002年   135篇
  2001年   87篇
  2000年   89篇
  1999年   87篇
  1998年   101篇
  1997年   101篇
  1996年   79篇
  1995年   125篇
  1994年   100篇
  1993年   93篇
  1992年   85篇
  1991年   71篇
  1990年   65篇
  1989年   62篇
  1988年   73篇
  1987年   59篇
  1986年   73篇
  1985年   78篇
  1984年   85篇
  1983年   32篇
  1982年   42篇
  1981年   41篇
  1980年   52篇
  1979年   24篇
  1978年   19篇
  1977年   16篇
  1976年   14篇
  1975年   11篇
  1973年   7篇
排序方式: 共有4979条查询结果,搜索用时 812 毫秒
981.
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.  相似文献   
982.
The target molecules of antibodies against falciparum malaria remain largely unknown. Recently we have identified multiple proteins as targets of immunity against Plasmodium falciparum using African serum samples. To investigate whether potential targets of clinical immunity differ with transmission intensity, we assessed immune responses in residents of low malaria transmission region in Thailand. Malaria asymptomatic volunteers (Asy: n = 19) and symptomatic patients (Sym: n = 21) were enrolled into the study. Serum immunoreactivity to 186 wheat germ cell-free system (WGCFS)-synthesized recombinant P. falciparum asexual-blood stage proteins were determined by AlphaScreen, and subsequently compared between the study groups. Forty proteins were determined as immunoreactive with antibody responses to 35 proteins being higher in Asy group than in Sym group. Among the 35 proteins, antibodies to MSP3, MSPDBL1, RH2b, and MSP7 were significantly higher in Asy than Sym (unadjusted p < 0.005) suggesting these antigens may have a protective role in clinical malaria. MSP3 reactivity remained significantly different between Asy and Sym groups even after multiple comparison adjustments (adjusted p = 0.033). Interestingly, while our two preceding studies using African sera were conducted differently (e.g., cross-sectional vs. longitudinal design, observed clinical manifestation vs. functional activity), those studies similarly identified MSP3 and MSPDBL1 as potential targets of protective immunity. This study further provides a strong rationale for the application of WGCFS-based immunoprofiling to malaria vaccine candidate and biomarker discovery even in low or reduced malaria transmission settings.  相似文献   
983.
In unfertilized eggs of the sea urchin, the quite low respiratory rate is enhanced by tetramethyl- p -phenylenediamine (TMPD), phenazine methosulfate (PMS) and sperm and this augmentation is completely inhibited by carbon monoxide (CO). Exposure to light releases eggs from this CO-mediated inhibition. The action spectra for photoreactivation of CO-inhibited cytochrome c oxidase in isolated mitochondria and CO-blocked respiration in TMPD-treated eggs were found to be similar to the absorption spectrum of CO-bound cytochrome aa 3. In PMS-treated eggs and fertilized eggs, the maximum photoreactivation of CO-inhibited respiration occurred at a light fluence rate higher than that for maximum photoreactivation of CO-inhibited respiration in TMPD-treated eggs, with peaks at the same wavelengths as those in the absorption spectrum of reduced cytochrome b. A similar phenomenon was seen for NADH cytochrome c reductase in mitochondria. Thus, cytochrome c oxidase and NADH cytochrome c reductase, whose activities are not altered by fertilization, seem to be functional, even in unfertilized eggs. In unfertilized eggs, difference spectra indicated that PMS and sperm augmented cytochrome b reduction and that TMPD accelerated cytochrome c reduction without cytochrome b reduction. Therefore, it is likely that depression of electron transport to cytochrome b , which is augmented by PMS and sperm, is responsible for the low respiratory rate in unfertilized eggs.  相似文献   
984.
A psychrophilic green alga belonging to the Chloromonas genus and here named ANT1 was collected in Antarctica. The activities of two enzymes, nitrate reductase and argininosuccinate lyase, were measured at various temperatures and compared to the corresponding enzyme activities in the mesophilic species Chlamydomonas reinhardtii Dangeard. For both enzymes, the temperature for apparent optimal activity was about 20°C lower in ANT1 than in C. reinhardtii. The enzymes were also submitted to various heat treatments before measuring their activities. Both psychrophilic enzymes were more sensitive to heat than the corresponding mesophilic enzymes. It is worth stressing, however, that in both species nitrate reductase was much more sensitive to heat than argininosuccinate lyase, which probably indicates that the peculiar structure of each protein primarily determines its dependence to temperature. Secondary adaptations to low temperatures should then occur to confer the psychrophilic character.  相似文献   
985.
15N natural abundances and N use by tundra plants   总被引:2,自引:0,他引:2  
Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar 15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups were consistent across moist tussock tundra at several other sites and across five other tundra types at a single site. Ericaceous species had the lowest 15N values, ranging between about –8 to –6. Foliar 15N contents increased progressively in birch, willows and sedges to maximum 15N values of about +2 in sedges. Soil 15N contents in tundra ecosystems at our two most intensively studied sites increased with depth and 15N values were usually higher for soils than for plants. Isotopic fractionations during soil N transformations and possibly during plant N uptake could lead to observed differences in 15N contents among plant species and between plants and soils. Patterns of variation in 15N content among species indicate that tundra plants acquire nitrogen in extremely nutrient-poor environments by competitive partitioning of the overall N pool. Differences in plant N sources, rooting depth, mycorrhizal associations, forms of N taken up, and other factors controlling plant N uptake are possible causes of variations in 15N values of tundra plant species.  相似文献   
986.
Reassessing the nitrogen relations of Arctic plants: a mini-review   总被引:7,自引:2,他引:5  
The Arctic is often assumed to be an NH4+-dominated ecosystem. This review assesses the validity of this assumption. It also addresses the question of whether Arctic plant growth is limited by the ability to use the forms of nitrogen that are available. The review demonstrates that several sources of soil nitrogen are available to Arctic plants, including soluble organic nitrogen (e.g. glycine, aspartic acid and glutamic acid), NH4+ and NO?3. In mesic Arctic soils, soluble organic nitrogen is potentially more important than either NH+4 or NO?3. Many Arctic species are capable of taking up soluble organic nitrogen (either directly and/or in association with ectomycorrhizae), with the greatest potential for soluble organic nitrogen uptake being exhibited by deciduous species. The ability to take up soluble organic nitrogen may enable some Arctic plants to avoid nitrogen limitations imposed by the slow rate of organic matter decomposition. NO?3 is also present in many Arctic soils, especially calcareous soils and soils near flowing water, animal burrows and bird cliffs. Arctic species characteristic of mesic and xeric habitats are capable of taking up and assimilating NO?3. Even when present in lower concentrations in soils than NH+4, NO?3 is still an important source of nitrogen for some Arctic plants. Arctic-plants therefore have a variety of nitrogen sources available to them, and are capable of using those nitrogen sources. Taken together, these findings demonstrate that the Arctic is not an NH+4dominated ecosystem. Symbiotic fixation of atmospheric N2 does not appear to be an important source of nitrogen for Arctic plants. The reliance of Arctic plants on internal recycling of nitrogen substantially reduces their dependence on soil nitrogen uptake (this is particularly the case for slow-growing evergreens). Despite the high level of internal nitrogen recycling, Arctic plant growth remains limited by the low levels of available soil nitrogen. However, Arctic plant growth is not limited by an inability to utilize any of the available forms of nitrogen. The potential effects of climatic warming on nitrogen availability and use are discussed. The question of whether the Arctic ecosystem is uniquely different from temperate nitrogen-deficient ecosystems is also assessed.  相似文献   
987.
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl--D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase.  相似文献   
988.
Measurement of the activity of the enzyme nitrate reductase (NR) may provide a useful index of nitrogen metabolism in marine macroalgae. In several species, including Fucus gardneri P. C. Silva, in vitro assays previously failed to detect NR activity, necessitating the use of in situ (or so-called“in vivo”) assays, which are more loosely controlled and lead to dafficulties in assessing enzyme characteristics such as the half-saturation constant (Km). In this paper, we describe an in vitro NR assay developed for F. gardneri, in which tissue was homogenized using liquid nitrogen prior to the assay. In contrast to previous studies, enzyme activity was always detectable in F. gardneri collected directly from the field at levels up to 30 nmol nitrate converted to nitrite·min?1·g?1 wet weight. The effect of a variety of compounds, commonly added to NR extraction buffers, were tested. Additions of protease inhibitors, bovine serum albumin, and ethylenediamine tetraacetic acid had no consistent effects on NR activity, while polyvinyl pyrrolidone, potassium ferricyanide, and flavin adenine dinucleotide significantly decreased activity. The half-saturation constant (Km) for NADH was 0.18 (± 0.05) mM and for nitrate, Km=0.99 (±0.41) mM. Significant NR activity was detected without the addition of nitrate, suggesting that internal pools of nitrate averaging approximately 20 μmol NO3?·g?1 wet weight were present in F. gardneri in February. The distribution of NR activity within the plant was highly variable between individuals, but activities were approximately 5-fold lower in the stipe than in midregions. In plants freshly sampled from the field, NR activity increased 7-fold from February to March, then fell to near-February levels by April. These changes in activity may correspond to seasonal changes in growth rate. The assay, optimized for F. gardneri, was used in several different macroalgal species from different taxa: Porphyra sp., Coralina vancouveriensis Yendo, Ulva sp., Enteromorpha intestinalis (Linnaeus) Nees, Macrocystis integrifolia Bory; and Costaria costatum (C. Agardh) Saunders. For all species tested, NR activity was detectable and, except for one species (Porphya sp.), was equal to or greater than activities measured by other workers using in vivo or in vitro assays for plants under similar conditions.  相似文献   
989.
Abstract: Exposure of cultured rat hippocampal neurons to glutamate resulted in accumulation of cellular peroxides (measured using the dye 2,7-dichlorofluorescein). Peroxide accumulation was prevented by an N -methyl- d -aspartate (NMDA) receptor antagonist and by removal of extracellular Ca2+, indicating the involvement of NMDA receptor-induced Ca2+ influx in peroxide accumulation. Glutamate-induced reactive oxygen species contributed to loss of Ca2+ homeostasis and excitotoxic injury because antioxidants (vitamin E, propyl gallate, and N-tert -butyl-α-phenylnitrone) suppressed glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and cell death. Basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF), but not ciliary neurotrophic factor, each suppressed accumulation of peroxides induced by glutamate and protected neurons against excitotoxicity. bFGF, NGF, and BDNF each increased (to varying degrees) activity levels of superoxide dismutases and glutathione reductase. NGF increased catalase activity, and BDNF increased glutathione peroxidase activity. The ability of the neurotrophic factors to suppress glutamate toxicity and glutamate-induced peroxide accumulation was attenuated by the tyrosine kinase inhibitor genistein, indicating the requirement for tyrosine phosphorylation in the neuroprotective signal transduction mechanism. The data suggest that glutamate toxicity involves peroxide production, which contributes to loss of Ca2+ homeostasis, and that induction of antioxidant defense systems is a mechanism underlying the [Ca2+]i-stabilizing and excitoprotective actions of neurotrophic factors.  相似文献   
990.
A fast-growing normal and a slow-growing gibberellin-deficient mutant of Lycopersicon esculentum (L.) Mill. cv. Moneymaker were used to test the hypothesis that slow-growing plants reduce NO3? in the root to a greater extent than do fast-growing plants. Plants that reduce NO3? in the root may grow more slowly due to the higher energetic and carbon costs associated with root-based NO3? reduction compared to photosynthetically driven shoot NO3? reduction. The plants were grown hydroponically with a complete nutrient solution containing 10 mM NO3? and the biomass production, gas exchange characteristics, root respiratory O2 consumption, nitrate reductase activity and translocation of N in the xylem were measured. The gibberellin-deficient mutants accumulated more total N unit?1 dry weight than did the faster-growing normal plants. There were no significant differences between the genotypes in the rates of photosynthesis expressed on a leaf dry weight basis. The plants differed in the proportion of photosynthetic carbon available to growth due to a greater proportion of daily photo-synthate production being consumed by respiration in the slow-growing genotype. This difference in allocation of carbon was associated with differences in the specific leaf area and specific root length. In addition, a greater leaf weight ratio in the fast-growing than in the slow-growing plants indicates a greater investment of carbon into biomass supporting photosynthetic production in the former. We did not find differences in the activity or distribution of nitrate reductase or in the N composition of the xylem sap between the genotypes. We thus conclude that the growth rate was determined by the efficiency of carbon partitioning and that the site of NO3? reduction and assimilation was not related to the growth rate of these plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号