首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13967篇
  免费   648篇
  国内免费   498篇
  2023年   162篇
  2022年   241篇
  2021年   285篇
  2020年   294篇
  2019年   350篇
  2018年   407篇
  2017年   251篇
  2016年   298篇
  2015年   381篇
  2014年   641篇
  2013年   923篇
  2012年   453篇
  2011年   730篇
  2010年   561篇
  2009年   779篇
  2008年   722篇
  2007年   777篇
  2006年   669篇
  2005年   648篇
  2004年   575篇
  2003年   449篇
  2002年   409篇
  2001年   285篇
  2000年   257篇
  1999年   260篇
  1998年   258篇
  1997年   232篇
  1996年   191篇
  1995年   243篇
  1994年   223篇
  1993年   193篇
  1992年   180篇
  1991年   148篇
  1990年   141篇
  1989年   146篇
  1988年   131篇
  1987年   116篇
  1986年   120篇
  1985年   125篇
  1984年   187篇
  1983年   110篇
  1982年   116篇
  1981年   98篇
  1980年   105篇
  1979年   61篇
  1978年   40篇
  1977年   40篇
  1976年   28篇
  1975年   23篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 922 毫秒
51.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   
52.
Y. Mineyuki  J. Marc  B. A. Palevitz 《Planta》1989,178(3):291-296
The organization of microtubule (MT) arrays in the guard mother cells (GMCs) of A. cepa was examined, focussing on the stage at which a longitudinal preprophase band (PPB) is established perpendicular to all other division planes in the epidermis. In the majority of young GMCs, including those seen just after asymmetric division, MTs are distributed randomly throughout the cortex and inner regions of the cytoplasm. Few MTs are associated with the nuclear surface. As the GMCs continue to develop, MTs cluster around the nucleus and a PPB appears as a wide longitudinal band. Microtubules also become prominent between the nucleus and the periclinal and transverse walls, while they decrease in number along the radial longitudinal walls. The PPB progressively narrows by early prophase, and a transversely oriented spindle gradually ensheaths the nucleus. These observations indicate that the initial, broad PPB is organized by a rearrangement of the random cytoplasmic array of MTs. Additional reorganization is responsible for MTs linking the nucleus and the cortex in the future plane of the cell plate, and for narrowing of the PPB.Abbreviations GMC guard mother cell - MT microtubule - PPB preprophase band  相似文献   
53.
When following the pattern of the disappearance of NH 4 + –N from ammonium sulfate applied to the flooded soil-rice plant system (field and greenhouse experiments) during a growing season, it was observed that the lowest NH 4 + –N level coincided with the highest value of NR activity in the leaves. Nitrate was detected in both the root and shoot systems of the rice plants and autotrophic nitrifiers (Nitrosomonas and Nitrobacter) were particularly abundant. Since it was also demonstrated in this work that the NR activity of rice plants grown with nitrate fertilization (growth chamber culture experiments) was inducible by its substrate, it can be assumed that NH 4 + –N oxidation takes place in the water-logged soil studied. Therefore, the occurrence of the nitrification process following NH 4 + –N fertilizer application can be predicted by thein vitro orin situ evaluation of the NR activity of the rice leaf as an indicator.  相似文献   
54.
J. Marc  Y. Mineyuki  B. A. Palevitz 《Planta》1989,179(4):530-540
The generation of the unique radial array of microtubules (MTs) in stomatal guard cells raises questions about the location and activities of relevant MT-organizing centers. By using tubulin immunofluorescence microscopy, we studied the pattern of depolymerization and reassembly of MTs in guard cells of Allium cepa L. Chilling at 0°C reduces the MTs to small remnants that surround the nuclear surface of cells in the early postcytokinetic stage, or form a dense layer along the central portion of the ventral wall in older guard cells. A rapid reassembly on rewarming restores either MTs extending from the nuclear surface randomly throughout the cytoplasm in very young cells, or an array of MTs radiating from the dense layer at the ventral wall later in development. A similar pattern of depolymerization and reassembly is achieved by incubation with 100 M colchicine followed by a brief irradiation with ultraviolet (UV) light. Incubation with 200 M colchicine leads to a complete depolymerization that leaves only a uniform, diffuse cytoplasmic fluorescence. Nonetheless, UV irradiation of developing guard cells induces the regeneration of a dense layer of MTs at the ventral wall. The layer is again positioned centrally along the wall, even if the nucleus has been displaced by centrifugation in the presence of cytochalasin D. Neither the regenerated layer nor the perinuclear MTs seen earlier are related to the staining pattern of serum 5051, which reportedly binds to centrosomal material in animal and plant cells. The results support the view that, soon after cytokinesis, a planar MT-organizing zone is established in the cortex along the central portion of the ventral wall, which then generates the radial MT array.Abbreviations GC guard cell - MT microtubule - MTOC microtubule-organizing center - UV ultraviolet To whom correspondence should be addressed.  相似文献   
55.
Erythrina lectins possess similar structural and carbohydrate binding properties. Recently, tri- and tetra-antennary complex type carbohydrates with non-reducing terminal galactose residues have been shown to be precipitated as tri- and tetravalent ligands, respectively, with certainErythrina lectins [Bhattacharyya L, Haraldsson M, Brewer CF (1988) Biochemistry 271034-41]. The present work describes a comparative study of the binding and precipitating activities of fourErythrina lectins,viz. E. corallodendron, E. cristagalli, E. flabelliformis, andE. indica, with multi-antennary complex type carbohydrates and synthetic cluster glycosides. The results show that though their binding affinities are very similar, theErythrina lectins show large differences in their precipitating activities with the carbohydrates. The results also indicate significant dependence of the precipitating activities of the lectins on the core structure of the carbohydrates. These findings provide a new dimension to the structure-activity relationship of the lectins and their interactions with asparagine-linked carbohydrates.Abbreviations EAL, ECorL, ECL, EFL, and EIL represent the lectins from the seeds ofErythrina arborescens, - E. corallodendron, E. cristagalli, E. flabelliformis, andE. indica respectively - AFOS thetri-antennary complex type oligosaccharide from asialofetuin - AFGP the tri-antennary glycopeptide from asialofetuin - MeGal methyl -d-galactopyranoside Unless stated otherwise all sugars are in thed-configuration.  相似文献   
56.
During the reductive process in the tissues, the aerobes generate a number of oxidants. Unless these oxidants are reduced, oxidative damage and cell death would occur. Oxidation of plasma membrane lipids leads to autocatalytic chain reactions which eventually alter the permeability of the cell. The role of oxidative damage in the pathophysiology of diabetic complications and ischemic reperfusion injury of myocardium, especially the changes in the channel activity which may lead to arrhythmia have been studied. Hyperglycemia activates aldose reductase which could efficiently reduce glucose to sorbitol in the presence of NADPH. Since NADPH is also aldose required by glutathione reductase for reducing oxidants, its diversion would lead to membrane lipid oxidation and permeability changes which are probably responsible for diabetic complications such as cataractogenesis, retinopathy, neuropathy etc. Antioxidants such as butylated hydroxy toluene (BHT) and also reductase inhibitors prevent or delay some of these complications. By using patch-clamp technique in isolated frog myocytes, we have shown that hydroxy radicals generated by ferrous sulfate and ascorbate as well as lipid peroxides such as t-butyl hydroperoxide facilitate the entry of Na+ by oxidizing Na+-channels. Increased intracellular Na+ leads to an increase in Na+/Ca2+ exchange. The increased Na+ concentration by itself may produce electrical disturbance which would result in arrhythmia. Increased Ca2+ may affect proteases and may help in the conversion of xanthine dehydrogenase to xanthine oxidase, consequently increased production of super oxide radicals. Increased membrane lipid peroxidation and other oxygen free-radical associated membrane damage in myocytes has been demonstrated.  相似文献   
57.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   
58.
59.
After uptake of microbial ferrisiderophores, iron is assumed to be released by reduction. Two ferrisiderophore-reductase activities were identified in Escherichia coli K-12. They differed in cellular location, susceptibility to amytal, and competition between oxygen and ferrichrome-iron(III) reduction. The ferrisiderophore reductase associated with the 40,000×g sediment (membrane-bound enzyme) was inhibited by 10 mM amytal in contrast to the ferrisiderophore reductase present in the 100,000×g supernatant (soluble enzyme). Reduction by the membrane-bound enzyme followed sigmoid kinetics, but was biphasic in the case of the soluble enzyme. The soluble reductase could be assigned to a protein consisting of a single polypeptide of M r 26000. Reduction of iron(III) by the purified enzyme depended on the addition of NADH or NADPH which were equally active reductants. The cofactor FMN and to a lesser degree FAD stimulated the reaction. Substrate specificity of the soluble reductase was low. In addition to the hydroxamate siderophores arthrobactin, schizokinen, fusigen, aerobactin, ferrichrome, ferrioxamine B, coprogen, and ferrichrome A, the iron(III) complexes of synthetic catecholates, dihydroxy benzoic acid, and dicitrate, as well as carrier-free iron(III) were accepted as substrates. Both ferrisiderophore reductases were not controlled by the fur regulatory system and were not suppressed by anaerobic growth.Abbreviations DHB dihydroxybenzoic acid - MECAM 1,3,5-N,N,N-tris-(2,3-dihydroxybenzoyl)-triamino-methylbenzene - MECAMS 2,3-dihydroxy-5-sulfonyl-derivative of MECAM  相似文献   
60.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号